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GENERAL INTRODUCTION 

A number of compounds of transition metals with nonmetals of group V 

and VI with ideal stoichiometric ratio X/M=l have the NaCl-type crystal 

structure and have wide ranges of homogeneity resulting from vacancies. 

These vacancies play an important role in the structural chemistry and 

electronic properties of these refractory solids. 

Research in the area of structure in nonstoichiometric systems is an 

active and rapidly advancing area of solid state chemisty. For several 

decades, defects in crystals have been treated as a deviation of the 

ideal composition of a crystal. A small amount (less than 10%) of 

vacancies is usually stabilized by the configurational contribution to 

the entropy.1 However it is well known that many nonstoichiometric 

compounds can not be categorized according to this well-established 

concept of solid state chemistry because the stoichiometric deviation is 

too wide to be idealized with classical defect theory. Furthermore the 

vacancies in these solids are observed to order when samples are cooled 

slowly. Examples of highly defective compounds are Zr^.j^S (23% of the 

metal sites are unoccupied), Sc^.j^S (20% of the metal sites are 

unoccupied),2 Lui_jjS (25% of the metal sites are unoccupied), NbO (25% 

of the metal and nonmetal sites are unoccupied), TiO (15% of the metal 

sites and nonmetal sites are unoccupied), MnO (10% of the metal sites 

are unoccupied), NbNi_x (23% of the nonmetal sites are unoccupied). The 

configurational entropy term makes a significant contribution to the 

stability of high-symmetry disordered structures leading to their 

stability at high temperatures, but with decreasing temperature 
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competing energetic factors lead to the formation of more ordered phases 

and narrower ranges of homogeneity through heterogeneous reaction. The 

stabilities of nonstoichiometric solids and the widths of their 

homogeneity ranges depend on the thermodynamic properties of both the 

defect phase and its adjacent phases. 

Over extended ranges of composition the defect materials appear, in 

the absence of long-range order, monophasic in diffraction experiments. 

Often the symmetry of materials is lowered with decreasing temperature 

by ordering processes. Within the homogeneity range of the NaCl-type 

solids samples of all compositions can be described in terms of the 

common face-centered cubic unit-cell with the superposition of 

superstructure when the symmetry has been broken.3 Usually the cell 

dimensions vary continuously with changing thermodynamic state through 

the symmetry change, which implies there is progressive and uniform 

change in structure. Such crystal structure changes may occur via one 

of the three types of transitions: order-disorder, dlsplaclve and 

combination of both. 

The following is a brief review of the structure changes that have 

been found to occur in the homogeneity range of NaCl-type solids; a) In 

defect scandium-sulfur system, Scj.^S, the structure changes from cubic 

to rhombohedral with decreasing temperature. It was found that this 

transition corresponds to doubling of the periodicity along the body 

diagonal of the cubic cell (Fm3m space group) to yield RJm symmetry. 

The symmetry change was found to result from segregation of the scandium 

site vacancies into alternate (111) planes, and further ordering was 

observed within these planes using electron diffraction.^ b) 
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Monstolchiometric zirconium sulfides have been studied by number of 

groups since the earliest investigation in 1939.5 F. Jellinek suggested 

that hyperstoichiometric ZrS has either a primitive cubic or a 

rhombohedral structure of CdCl2-type.^ Early work in Franzen's group 

yielded a monoclinic superstructure for Zr^yyS.^'® c) The crystal 

Structure of LU3S4 was solved and its orthorhombic structure described 

as a sheared population wave defect-ordering based on the NaCl-type 

lattice. In this system, the site occupation in metal containing planes 

varies periodically along the cubic (420) direction.9 d) The 

nonstoichiometric mononitride of niobium, MbN^.x has been studied a 

number of times. Brauer and Esselborn,^® Guard and his coworkers,and 

Chrlstensen,12 all present results that show a transition from cubic to 

tetragonal with decreasing temperature. However, the exact nature of 

the transition has not been completely clarified since x-ray, neutron 

and electron diffraction investigations as carried out by several 

groups led to contradictory results, e) Stoichiometric NbO and TiO also 

have ordered defect rock-salt type structures in which both metal and 

oxygen atoms are missing. In NbO, Nb and 0 are removed from the corners 

and the centers, respectively, of the face-centered cubic cell. The 

defect structure of TiO, in which 1/6 of the oxygen and metal atoms are 

missing, has been extensively studied by Watanabe.f) In MnO and 

CoO, defects have been indicated and transitions from face-centered 

cubic to tetragonal and rhombohedral, respectively, were observed. 

The electronic transport properties of these compounds range from 

semiconductors to metallic conductors and even to low temperature 

superconductors. Many superconductors with what were, prior to recent 
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discoveries in the ternary copper oxides, relatively high 

superconducting transition temperatures have NaCl-type structure.3*1^,17 

The superconducting properties of these solids change as a function of 

composition. Much work has been done on properties of superconducting 

nitrides, carbides and oxides.As a notable example, for MbN* it 

was found that has a maximum at the 1:1 ideal metal-to-nonmetal ratio 

(Tc=18K).24,25 Superconducting properties of Zrj.^S, Sci_xS and Luj.^S, 

as well as other selenides, sulfides and phosphides were reported by 

Moodenbaugh.lG 

The mechanisms of vacancy stabilization and ordering has attracted 

research Interest. In many cases among oxides^G and sulfides,the 

ionic model fails to describe the stability of defect structures even 

though these compounds are quite polar. 

Electronically driven mechanisms in TiO have been proposed by 

Huisman and coworkers,28 Denker^^ and Goodenough.After electronic 

structure calculation on one-to-one and an ordered defect ScS, Franzen 

and coworkers, following Huisman et al., proposed that the mechanism for 

vacancy stabilization is probably energetic, entropie stabilization 

being insufficient in cases with such large vacancy concentrations.31 

Burdett and Hughbanks^^ reported that the creation of vacancies enhances 

metal-metal bonding in the NbO and TiO systems to stabilize the unique 

crystal structures in the defect ordered materials. 

One way to explain symmetry lowering deformations is via Peierls 

distortions. The partial filling of a band leads to an electron-phonon 

coupling which opens up a gap just at the Fermi level. In this way a 

continuous phase transition in a crystal can involve a soft mode. As 
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the lattice becomes unstable at certain temperatures, the mode 

corresponding to a given irreducible representation can become 

increasingly more active until a distortion results from a corresponding 

static displacement. The transition from NiAs to MnP structure in VS^ 

is an example of a displacive transition which was described by R. 

Hoffmann and W. Tremel^^»^^ applying such arguments. 

Although numerous efforts have been made to explain the nature of 

phase transitions in defect solids, not much is reliably known 

concerning these interesting phenomena. 

The goal of this research is to examine the thermal behavior of 

NaCl-type defect solids to contribute to the understanding of the 

interrelationship between structure, stability and electronic structure 

in these materials. During the x-ray diffraction investigations the 

known NaCl-type diffraction patterns are changed because of 

line-splitting or the appearance of weak superstructure lines or both. 

It is difficult to determine an unknown distorted structure using only 

geometric considerations based on the NaCl-type sublattice. The 

space-group symmetry in this case (Fm3m) is a supergroup of all cubic 

space-group types, as well as all tetragonal, rhombohedral, orthorhomblc 

and monocllnic space-group types. The problem is complicated because 

the nature of the formation process leads to multiple twinning and 

therefore good single crystals are not available in the low-symmetry 

compounds. There are far too many superstructure and distortion 

alternatives to permit the solution of structure using conventional 

x-ray powder diffraction alone. If there is no observation of two-phase 

coexistence. Landau theory of symmetry and phase transitions can be 
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applied to greatly reduce the number of solutions. The conditions for 

second-order phase transition from Landau theory provides remarkable 

guidelines for the solution of such problems. Finally these solutions 

can be used to refine the observed x-ray powder diffraction data using 

the full-profile refinement procedure. 

In this study, the nature of order-disorder transitions in NbN^.jj, 

Lui_xS and Y^.^Se were investigated based on Landau theory of 

symmetry and phase transitions, and all the possible thermal symmetry 

breaking transitions are presented with examples where these have been 

observed. 
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LANDAU THEORY 

Transitions between different crystal modifications usually take 

place via abrupt reconstruction of the crystal lattice, and the 

structure of a crystal undergoes a discontinuous change. However, 

besides such discontinuous transitions, another type of transition 

involving a change of symmetry is possible, namely one in which the 

arrangement of the atoms in a crystal changes continuously starting at a 

certain transition temperature. The transitions of the first kind are 

first-order phase transitions while those of the second kind are second-

order. Such second-order transitions can occur via continuous 

displacement of atoms or via changes in ordering in the crystal or via a 

combination of both. An example of displacive transitions is the NlAs-

type to MnP-type phase transition in which atomic positions change 

continuously away from high symmetry positions (PSg/mmc ^ Pcmn) with 

decreasing temperature.^^ The (3-3' brass distortion^^ is the classical 

example of a pure order-disorder transition in which Zn and Cu atoms 

interchange their positions with increasing temperature. An example of 

the third type, the combination of displacive and order-disorder, is the 

NbNi-jj distortion which is discussed in this thesis. 

In contrast to first-order transitions, second-order transitions 

occur without coexistence of two phases in equilibrium. At each 

temperature, even at the transition temperature, only one phase exists, 

so that such a transition is a transition within one phase not between 

two phases. At the transition point the solid acquires new symmetry 

properties without growth or nucleation of a new phase so that the 
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space-group symmetry of the crystal changes suddenly. This type of 

transition Is only possible If certain conditions relating the 

symmetries above and below the transition point are fulfilled. 

Both the theoretical and experimental understanding of the phase 

transitions under consideration have benefited greatly from the 

application of group-theoretical methods. Since Landau first applied 

this method for the case of continuous phase transitions, the validity 

of Landau's theory^G has been demonstrated by its application to the 

Intricate patterns of transitions observed in structural, magnetic and 

liquid crystalline transitions, and more recently, to the investigation 

of the properties of incommensurate phases. 

Landau's3G"39 theory provides four conditions that a phase 

transition must meet in order that it be possible for the transition to 

occur continuously: 

1) The space group of the two crystalline structures related by 

such a transition must be in a group-subgroup relationship. 

2) The change of the crystal should correspond to a single 

irreducible representation of the space-group of higher 

symmetry. 

3) There must be no third-order combination of the basis functions 

invariant under the symmetry operations of the group. 

4) The space lattice of the lower symmetry structure must be locked 

in by symmetry. 

In order to derive these symmetry conditions. Landau introduced the 

density function for the particles, p, and expressed the distorted 
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particle density, p, in terms of the undistorted particle density, p°, 

and a combination of basis functions, EnZiCi"*!", i.e. 

p=pO+EnZiCi"*i" 

where linear combinations of the functions «(n" with a given n transform 

one into another under all transformations of the high-symmetry group, 

and n labels each irreducible representation. When the crystal changes 

continuously in such a way that the symmetry of the crystal is lowered, 

the new density function p can be written in terms of high symmetry 

density function p° 

p(r)=p°(r)+ûp(r) 

where Ap is the term resulting from small change. Thus in the above 

Ap(r) has been expanded in a complete set of basis functions of the 

group of p°, as allowed by group theory. An arbitrarily small ûp can 

destroy some of the symmetry operations of group of p°, but cannot 

create new symmetry, and consequently the group of p is subgroup of the 

group of p°. Furthermore, the symmetry group of p does not contain all 

of the elements contained in the high symmetry group of p°. In general 

if one continuous transition occurs, the change corresponds to a single 

irreducible representation. Consequently the summation over n for 

different irreducible representations is omitted. 

p(r)=pO(r) + ZiCi*i 
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The changes of the crystal correspond to changes of the Gibbs free 

energy. The Gibbs free energy G of the crystal can be expressed as a 

function of intensive state and thus the coefficients Cj depend upon 

intensive state. The actual values of Cj as a function of P and T are 

determined by the equilibrium condition, i.e., G should be at a minimum. 

These coefficients also determine the symmetry of the low symmetry phase 

of the crystal since it is clear that symmetry of a function p(r) is 

determined by the value of the coefficients of the linear combination of 

For convenience the Cj's can be normalized after introducing the 

notation the normalized coefficients, yj, are defined 0^=^71, 

so that Eyi^=1. Since p -» p° as Cj 0, it is possible to expand G in 

a power series of in the Cj's (the product of Y] and yj) near the 

transition point: 

G = Go + an + Arf + Bn3f3(yi) + Cr^f^Xy;) +... 

where, f^Cyj) is a homogeneous function of order n In the yj's. 

The free energy at n = 0 corresponds to a minimum for the stable 

symmetric phases, thus the linear term vanishes. In the presence of a 

third-degree term the value M = 0 does not correspond to minimum of free 

energy at the transition point, therefore a second-order phase 

transition is possible only if third order terms in free energy are 

zero, i.e., it is necessary that this term must vanish for symmetry 

reasons. The Gibbs free energy which is minimized to yield stable lower 

symmetry phases that result from second-order transitions Is therefore: 



www.manaraa.com

11 

G = Go + Arf + if ZoC *5*4(^1), 

where, because G Is invariant under symmetry operations, the f"'s must 

be invariant combinations of the n's and a labels independent 

invariants of corresponding order. 

4th Condition 

In reciprocal space the free energy G can be expanded in 5k about a 

given k 

G(k+5k)=Go(k)+a' 8k+... 

If there is a second-order phase transition at a wave-vector k with 

change of the structure corresponding to a particular irreducible 

representation, it is necessary that G has a minimum at the transition 

point. For G to have a minimum at a fixed k, the vector a must 

necessarily vanish at the k to which a second-order transition 

corresponds, i.e., there can be no vector invariant. 

The fourth condition of Landau is met if the proper symmetry group 

of k contains inversion or intersecting axis and plane or an 

intersecting pair of axes. The k points obeying one of these conditions 

are the high symmetry points of the first Brillouin zone. (Even if this 

condition is not obeyed, a second-order phase transition is still 
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Figure 1. The body-centered cubic Brillouin zone with the high symmetry 

points indicated 
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possible, but then the low-symmetry structure cannot be described by an 

ordinary way. It Is an Incommensurate phase, a case that will not be 

considered here.) 

For example, If the high-symmetry structure is NaCl-type, then such 

high symmetry points are; r(k=0), X(k=a*,b*,c*), W(k=±(a*+c*/2), 

±(b*+a*/2), ±(c*+b*/2)) and L((k=a*+b*+c)/2, (a*+b*-c*)/2, (a*-b*+c*)/2, 

(—a + b*+c*)/2). 

An Example of a Transition at Special Point : L Point 

It has been observed in metal deficient Sc^.^S and Zr^.xS that the 

vacancies, which are randomly distributed at high temperature, order in 

alternate 1,1,1 planes when the samples are cooled slowly.3'40 -jhe 

transition appears to occur continuously at the L point with four 

vectors in the star, i.e., k=(l/2,1/2,1/2), (-1/2,1/2,1/2), 

(1/2,-1/2,1/2), (1/2,1/2,-1/2). For example, if the transition 

corresponding to the single vector, k=(a*+b*+c*)/2, is considered, then 

the translation operations ao+(bo+CQ)/2, bo+(aQ+Co)/2 and Co+(ao+bo)/2 

remain, whereas, those such as a^ and (bo+Co)/2 are lost (If T is 

translational symmetry operation of the parent cubic sublattice, then 

k'T is integral for all translations that remain). The result is a 

rhombohedral lattice with arh=ao+(bo+Co)/2; brh=bQ+(ao+Co)/2 and 

Crh=Co+(ao+bo)/2. A basis function which is symmetric with respect to 

translations that remain and antisymmetric with respect to those that 

are lost can be found, e.g., cos(2ii(a*+b*+c*)/2• r=cosii(x+y+z>. There 
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are then four basis functions which form a basis for an irreducible 

representation corresponding to the four vectors in the star: 

*l=cosn(x+y+z) 

*2=cosR(-x+y+z) 

*3=cosn(x-y+z) 

*4=cosn(x+y-z) 

Evidently it is not possible to form third-order combinations from these 

basis functions and thus no third order invariant exist. These are 

basis functions corresponding to the totally symmetric small 

representation at the L point. 

The Gibbs free energy of the ordered structure is expanded to 

fourth order in the coefficients of the *i's. The *i's form three 

independent fourth-order invariant combinations, i.e., 

and *1*2*3*4" Thus ïYi^Yj^ and YiY2Y3Y4 are fourth-order 

invariant combinations of the yi's, but one of the three terms, 

can be eliminated by using (ZYi^)^=l. Then the fourth-order term in G 

looks like 

[ C1+C2 ZYi'^+C] Yi Y2 Y3 Y4 ] 

and the stable ordered structure will correspond to minima of this 

function subject to the restraint SYi^=l« There are three types of 

solutions: 
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1) If C2 < C3/I2 , Yl=l» Y2=Y3=Y4=0 

2) if C3 ̂  0 and C2 ̂  C3/I2 , yi=Y2='Y3=Y4=1/2 

3) if C3 > 0 and C2 > C3/I2 , Yi=Y2=Y3=-Y4=l/2 

These three solutions are the possible states of ordered structures 

arising from the NaCl-type structure at point L and corresponding to the 

totally symmetric small representation. The first solution yields a 

rhombohedral lattice and the other two solutions yield cubic lattices 

with doubled cell parameter. 

The space groups corresponding to this (and other) irreducible 

representation at the L point can be determined by investigating the 

symmetries of these "stable" combinations of basis functions. The small 

representations show how the basis functions behave under the essential 

symmetry operations in the group of the wave vector.41 

There are four 1-dimensional and two 2-dimensional small 

representations. The four 1-dimensional cases are shown in Table 1. 

Table 1. The one-dimensional small representations for the L point 

E 2C3 3C2 i 2S3 

iP-

T4 

1 

1 

1 

1 

1 

1 

1 

1 

1 

1 

•1 

•1 

1 

-1 

1 

-1 

1 

-1 

1 

-1 

1 

-1 

-1 

1 
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A transition corresponding to a small representation corresponds 

to the totally symmetric representation, and the 12 essential symmetry 

operations listed in the table remain. It follows, as we have just 

seen, that the space group RTm results. But a transition corresponding 

to the representation results in the loss of the essential i, S3, Cj 

operations of Fm3m. However, the product of these operations together 

with any lost translation is retained. For example Oy_j^ ( = (Tj) is lost, 

but followed by translation ag+bQ+Co is not. The operation {<^_ 

yjlll) implies a c-glide plane and the space group is RTC. Similarly 

the representation and cases result in the RJc and RTm space 

groups, respectively. 

Next it is necessary to determine the positions in those structures 

with RTm and RTc symmetry that are consistent with continuous change 

from NaCl-type symmetry. The two metal (0,0,0),(1/2,1/2,1/2) and two 

nonmetal (1/4,1/4,1/4), (3/4,3/4,3/4) positions are consistent with the 

NaCl-type structure. In RTm the (0,0,0) and (1/2,1/2,1/2) positions are 

decoupled, allowing for order-disorder, and the two nonmetal positions 

are coupled but variable, allowing for displacive distortion. However 

in RTc both positions are fixed and coupled allowing only for angle 

distortion of the lattice. The RTc case is thus a special case of the 

allowed RTm distortion. 

The question remains, what cubic space groups result for solutions 

Y2=Y2=Y3=Y4=l/2 and yi=Y2= Y3=-Y4=1 /2. The space groups for each 

solution can be determined by examining how the combinations of basis 

functions transform. The two combination functions are 
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\(/l=cos ii( x+y+z ) +COS ii( -x+y+z )+COS Ti( x-y+z ) +cos rt( x+y-z ) 

and 

i^2=-cos Ti( x+y+z )+COS n( -x+y+z )+cos ii( x-y+z )+cos ti( x+y-z ). 

The function transforms into itself under all symmetry operations of 

Fm3m and thus results in space group Fm3m. The second function 

transforms into itself under all operations that permute x, y, and z and 

under all operations that change three of the signs. All operations 

except those mentioned above are lost, but they can be recovered when 

they are combined with lost translation operations. For example, the 

operation is lost, but followed by (a+b)/2 is retained. It 

follows that the symmetry of the function ̂  is Fd3m. 

There are two 2-dimensional small representations, Eg and Ey, at the 

L point as shown in Table 2. 

For these 2-dimensional representations, the fourth condition must 

be tested first, by testing whether the antisymmetric square of the 

representation times the vector representation, V(g), contains the 

totally symmetric representation.^® Since the character of 

antisymmetric square of representation equals {X^(g)-X(g^)}, the 

condition expressed by: 

ZR(x2(g)-X(g2)}'V(g)=0 

where the g's are the elements of the point group of the wave vector and 

X(g) s are the characters of the representation. This consideration is 

carried out for a two 2-dimensional representation as shown for the Eg 

representation in Table 3. The conclusion of this test is that the 

vector representation and the antisymmetric square of the small 
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Table 2. The two-dimensional representations for the L point 

h  ' E ^3^(x+y+z)^3(x+y+z) ̂ 2(y-x) ^2(z-y) ^2(z-x) 

(J n 1 (? i) 1 
1 S3' =3 '̂ (y-x) t^(z-y) *(z-x) 

il n ( ?2) (Î I ]  ( 
Ey : Eg X 

representation are orthogonal and therefore the product does not contain 

the totally symmetric representation of Fm3m. 

As shown in Table 2, the representations are complex. For the 

physical applications considered here, the representation must be real. 

However, one can always construct a real representation from complex 

irreducible representations by combining complex-conjugate basis 

functions. For example, two complex-conjugate basis functions, and 

generate a complex irreducible representation, but combination of 

the basis functions: \f^=l/-j2(<j)]^+<J)2), ij^=l/i-j2( <|»]^-<j)2) transforms this 

complex representation into a real representation. Two complex basis 

functions which are found for this 2-dimensional small representation 

are 

<j)2=[cos2ii(x+y-z) + ecos2n(-x+y+z) + e2cos2n(x-y+z) ]cosii(x+y+z) 

*2=[cos2n(x+y-z)+ecos2n(x-y+z)+e2cos2n(-x+y+z)]cosn(x+y+z), 

where e=e^^^^ and the combined two real basis functions are of the form: 
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Table 3. The application of fourth condition of Landau's theory 

g E C32 C3 C2 C2' C2' ' 1 S3' S3 a 
/ 
a 

1 
<y 

g2 E C3 C32 E E E E S3 S32 E E E 

X(g) 2 -1 -1 0 0 0 2 -1 -1 0 0 0 

X(g2)2 -1 -1 2 2 2 2 -1 -1 2 2 2 

X2(g)4 1 1 0 0 0 4 1 1 0 0 0 

X2(g)-X(g2)2 2 2 -2 -2 -2 2 2 2 -2 -2 -2 

V(g) 3 0 0 -1 -1 -1 -3 0 0 1 1 1 

2{x2(g)-X(g2)}-V(g) = 

6 0 0 2 2 2 -6 0 0 -2 -2 -2 

[ 2cos2 ii(x+y-2 )-cos2 ii( x-y+z ) -cos2 7i( -x+y+z ) ] cos n(x+y+z ) 

V2=J3[cos2 n(x-y+z)-cos2 n(-x+y+z)]cos n(x+y+z). 

These basis functions correspond to the irreducible representation at 

k=(a*+b*+c*)/2, and the other functions corresponding to the irreducible 

representation at the other wave vectors in the star are; 

y, z) \^=i^(x, -y, z) V7=^(x, y, -z) 

^4=^(-x, y, z) -y, z) y» -z) 
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To find the stable structures corresponding to this 2-dimensional 

small representation, first consider the allowed fourth-order terms 

(which are combinations of the eight coefficients of <|>i's). There are 

two independent fourth-order terms, S(Y2j+l^+Y2j+2^)^ and 

(Y2j+l^+Y2j+2^)^ for j=0,l,2,3, but the second term can be 

eliminated because (EYi^)^=l. Then the fourth-order term in G looks 

like 

[CI+C2((YI^+Y2^)^+( Y3^+Y4^)^+( Y5^+Y6^)^+(r7^+Y8^)^)]1^ 

The possible space lattices are found by minimizing this function 

with respect to the yi subject to the restraint EYi^=l« There are two 

solutions; 1) if C2 < 0 then Y2j+l^+Y2j+2^=l» j=0,l,2,3 2) if C2 > 

0 then Yi=l/^8 (i=l~8). From these two solutions the combinations of 

wave vectors to which possible superlattices correspond are found, and 

also the basis functions can be combined: 

*1= Y2j+lt2j+l + Y2j+2^j+2 j=0,l,2,3 

The allowed symmetries are determined by examining the symmetry of the 

basis functions. The space-group C2/m was found for both, but lattice 

dimensions are different in each case. 

Similarly the other 2-dimensional representation, E^, was examined 

and the real combinations of basis functions were found for the real 

irreducible representation corresponding to four k's in the star: 
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i|/l=[2cos2ii(x+y-z)-cos2ri(-x+y+z)-cos2n(x-y+z)]cosn(x+y+z)(sln2itx-

sin2ny)(sln2ny-sin2iiz)(sin2iix-sin2iiz), 

^%=43[cos2n(x-y+z)-cos2n(-x+y+z)]cosn(x+y+z)(sln2nx-

sln2ny)(sln2ny-sin2iiz)(sin2iix-sin2nz) ; 

\|/3=V/l(-x, y, z), \j5=\|/i(x, -y, z), V7=V/i(x, y, -z), 

\|/4=t|̂ (-x, y, z), %=V%(x, -y, z), tB=V/2(x, Y, -z)-

The same two solutions minimize the fourth-order invariant function 

as In the Eg case. The allowed symmetries are C2/c for both solutions 

but with different lattice dimensions. 

Excluding this example (the L-point), all the allowed structures 

arising continuously from NaCl-type based on the four conditions of 

Landau theory of symmetry and phase transitions are worked out in 

following chapter. 

Application of Landau Theory for the Allowed Structure Arising 

Continuously from NaCl-type Structure ; The T, X and W Points 

In this chapter, the transitions corresponding to all high-symmetry 

points of the NaCl-type structure are considered. The procedure to find 

the low-symmetry structure followed in the preceding example is 

presented in detail below. 

1. Determine the wave vectors in the star at each high-symmetry 

point in reciprocal space. 

2. If the small representation is more than one-dimensional, the 

Landau fourth condition is tested to determine whether the 
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product of the vector representation and antisymmetric square 

of the representation contains the totally symmetric 

representation.38 

3. Determine whether any third-order combination of the basis 

functions can be invariant with translational symmetry 

operations or essential symmetry operations. 

4. If there is no third-order invariant combination of basis 

functions, then examine the fourth-order invariant combinations 

of the basis functions. 

5. G is expressed with invariant coefficients of the basis 

functions (Yi's) up to fourth-order and the solution which 

minimizes G with respect to the vi subject to the restraint 

Eyj^al is determined. 

6. From the solutions in step 5, the combinations of the wave 

vectors and basis functions can be found. The space lattice 

and space group can be determined from the combinations of wave 

vectors and basis functions respectively. 

7. Finally the atomic positions must be considered to determine 

whether positions in the structure are consistent with 

continuous change in phase to the NaCl-type. 

The Transition Corresponding to F Point 

If the transitions correspond to the wave vector k=0, i.e., if there 

is no superstructure, the small representations coincide with 

representations of the Oj^ point group. 
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In most cases, and it is true for k=0 of Fm3m, Landau's 

fourth-condition is satisfied for 2-dimensional and 3-dimensional small 

representations.^® The character of the one-dimensinal irreducible 

representation of the translational subgroup, {T}, is E'^k-T £QJ-

translation T at given wave vector. For k=0 the density function Sp 

transforms into itself, i.e., T-Sp=Sp' = Ee~'^'^ni<(»i=Eni<j>i under the action 

of any translational symmetry T. Thus there exist third-order 

combinations of basis functions which are translationally invariant. 

The existence of such third-order combinations means that a second-order 

phase transition in Fm3m at the T point cannot correspond to the totally 

symmetric small representation. Thus among four 1-dimensional 

representations, A^g is eliminated. The remainder of the 

representations A2g, and A2u result in Fm3, F43m and F732 

symmetries, respectively. However, in all three of these space groups, 

the only possible nonmetal (0,0,0) and metal (1/2,1/2,1/2) positions are 

equivalent to those in Fm3m, and no distortion is possible. Thus there 

are no phase transitions corresponding to the 1-dimensional 

representations at k=0. 

There are two 2-dimensional representations. Eg and Ey. The small 

representations are complex. Two complex basis functions corresponding 

to the Eg representation are 

*1= e2cos2 JIX+ ecos2 ny+cos2 nz  

and 

<|)2=ecos2 nx+ e2cos2 ny+cos2 Jiz. 
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The corresponding real representation can be generated from this complex 

Irreducible representation by combining the two complex conjugate basis 

functions. The combined real basis functions are 

\|/l=2cos2 iiz-cos2 Jix-cos2 Tçr 

and 

3 ( cos2 ny-cos2 IK ). 

To find stable structures corresponding to this 2-dimensional small 

representation, the invariant fourth-order terms in the Gibbs free 

energy expansion must be considered. In this case there is only one 

fourth-order invariant, YI^+Y2^+2YI^Y2^> therefore the stable solutions 

must be determined by consideration of the 6th order terms. However, 

since there are only two possible discrete solutions, \()i and 

these are taken as the stable solutions. For later use note that the 

basis function has space-group symmetry I4/mmm, and the combination 

of basis function \l^+\p2 transforms into itself under the operations E, 

3C2, 3a and 1, yielding space group Immm. However in the Eg case, the 

combination of basis function is invariant, which means that 

there are third-order combinations of real basis functions. Thus the 

transition corresponding to this case is eliminated. 

In the Ey case, the two real basis functions are 

\|/l=(2cos2iiz-cos2nx-cos2ity) (sin2nx-sin2ny)(sin2ny-sin2nz)(sin2nz 

-sin2nx) 

and 
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\j^=^3(cos2ny-cos2iK) (sin2iK-sin2ity')(sin2ny-sin2rtz)(sin2itz-sin2nx). 

The function has the space group 1422 and the function 

corresponds to the space group 1222. However, consideration of the 

atomic positions takes these two space groups back to the space groups 

I4/mmm and Immm which were found for the Eg case. Thus the transitions 

corresponding to the Eq representation are rejected for the same reason 

as in the Eg case. 

Next, there are four 3-dimensional small representations, T^g, T2g, 

Tj^y and T2u. The allowed fourth-order terms are considered first. 

There are two independent invariant functions such as <j)i^^ and 

because no symmetry operations transform into and thus the 

two fourth-order terms, and are Independent fourth-order 

invariants in the Gibbs free energy expansion. One of the fourth-order 

terms can be eliminated by recalling that EYi^=l» and thus 

The resulting fourth-order term in G looks like; 

[ CI+C2( YI^ Y2^+Y2^ Y3^+YL^ Y3^ ) ] ̂'^ • 

If C2 > 0, then G can be minimized with Yi=l and Yj)^Yj=0. For the other 

case, i.e., if C2 < 0, YI=Y2=Y3=1'J3 is a stable solution. Thus the 

functions and 4'i+<('2+4'3 are possible combinations of basis functions 

which have to be examined to find possible symmetries of the stable 

distorted structures* 

In the T^g case, the small representation^^ shows how the three 

basis functions transform under the 48 symmetry operation of point group 
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0^. A single basis function, for example transforms into itself 

under operations E, 02%, ^2(z+y)» ®^jc» °z-y '^z+y to yield 

the previously eliminated space group Immm. The basis function <j>i+<fr2+'f'3 

transforms into itself under symmetry operations E, Cg^^^+y+z)* 

^3(x+y+z)» *^2(y-x)> ^2(z-y)» ^2(z-x)» ^'^3^(x+y+z)» ^'^3^(x+y+z)» 

X» ^z-y sind ffg-x yield space group RTm. However in this case there 

exists a third-order Invariant. For example the functions <f'2» *3) 

transform into (*2, -*3, under the symmetry operation Cg^^+y-z) ̂ ind 

etc. and thus the third-order combination <fii<|)2<l>3 transforms into itself. 

The transitions corresponding to T^g are thus eliminated. 

In the T2g case, the basis function (pi transforms into itself under 

symmetry operations E, C2x> 204%, i, 284% to yield the space 

group I4/m. The basis function *i+4%+*3 transforms into itself under 

symmetry operations E, 2C32(jj+y+z)' ^ 2ito yield space 

group R7. However consideration of the possible atomic positions 

resulting from continuous distortion of the NaCl-type structure 

Indicates that the resultant space groups are not I4/m and RT, but 

rather are I4/mmm and RTm which were eliminated above. Thus there are 

no transitions corresponding to the T2g representation. 

Similarly for the T^y case, the basis functions <f>i and *i+*2+*3 

result in the space groups I?m2 and R32 respectively, but with same 

reasoning as in T2g case, those two space groups are eliminated. 

Finally in the T2q case, the basis function <))i transforms into 

itself under symmetry operations E, C2x» °^x' ^y; '^z-y "^z+y to 

yield the space group lAmm. The basis function (})2+(|)2+<t>3 transforms into 
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itself under symmetry operation E, 2C3(x+y+z)» Oy_x* ^nd ffg-x to 

yield the space group R3m. 

The Transitions Corresponding to X-Point 

For the X-point there are three wave vectors in the star, (k=a*, b*, 

c*), and these wave vectors can be combined to yield several space 

lattices. If the transitions correspond to a single wave vector, for 

example, k=c*, then translations such as (cQ+aQ)/2 and (Co+bo)/2 are 

lost, whereas, those such as (ao+bo)/2 and CQ remain. A basis function 

which has the period CQ is found to be 43=cos2nz, and *2=cos2ny and 

4%=cos2nx are the symmetrically equivalent basis functions with the 

periods b^ and a^ respectively. 

However, a third-order combination of these basis functions that is 

Invariant with respect to translation operations is found. While the 

third-order combination of basis functions transforms into 

under the translational symmetry operation (c°+a°)/2 and 

thus is not invariant, another third-order combination of basis 

functions, *24)3, transforms into itself under this and all other 

translational symmetry operations. Since the invariance under 

consideration includes invariance both with respect to translational 

symmetry operations and invariance with respect to the essential 

symmetry operations, the existence of this third-order term means that a 

second-order phase transition in FmSm at the X-point cannot correspond 

to the totally symmetric small representation. For use later note that 

the totally symmetric 1-dimensional representation at the X-point would 
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yield the space group P4/mmm with aj-et- aq/^Z, C(.g|.= ag, and this 

possibility is eliminated by the third condition of Landau. 

Before consideration of the remaining 1-dimensional small 

representations, the possible combinations of wave vectors in the star 

are determined below. The dimension of an irreducible representation of 

a space-group is the product of the number of wave vectors in the star 

and the dimension of the small representation, thus the dimension of the 

Irreducible representation corresponding to a 1-dimensional small 

representation at the X-point is three. As discussed above, the 

possible combinations of wave vectors in the star are determined by 

considering fourth-order invariant combinations of basis functions 

corresponding to an irreducible representation. In the case of the X 

point the fourth-order invariant term in G looks like: 

[Ci+C2(YI^Y2^+Y2^Y3^+Y1^Y3 ^ ) ] w h e r e  has bee n  e l i m i n a t e d  u s i n g  

(EYI2)2=L. 

The solutions minimizing G are of the two types, yi=1 and y2=Y3=0 

(if C2 > 0), and YI=Y2=Y3=1/^3 (if C2 < 0), showing that transitions 

corresponding to single wave vector or to all three wave vectors are the 

only possible cases. 

The lattice that results from the first solution (the first solution 

corresponds to a single wave vector a*) is a tetragonal lattice with 

atet=(bo+Co)/2, Ctet=Co* The second solution corresponds to the set of 

three wave vectors a*, b*, c*. If this set of all three vectors in the 

star at the X-point is considered, all the centering translations of the 

lattice appropriate to the NaCl-type are lost, but all translations 
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involving integral multiples of a^, and CQ remain, yielding a 

primitive cubic lattice with a=aQ. 

There are eight 1-dimensional small representations which are the 

same as the representations of the 04^ point group, as shown in Table 4. 

All of the small representations are examined below except the totally 

symmetric small representation, Ajg, which was eliminated by the third 

condition of Landau. 

Table 4. The one-dimensional small representations for the X-point 

E 2C4 C2 2C2' 2C2" i 2S4 Oh 2.crv Zoy 

AIG 1 

A2G 1 

BIG 1 -

®2g 1 -

ALU 1 

A2U 1 

Blu 1 -

®2u 1 

In the A2g case, a transition corresponding to this small 

representation results in the loss of the symmetry operations 2C2', 

2C2", 2ffy and 2oy of Fm3m, however, the products of these operations 

together with lost translations are retained. For example, 0^ ( = o^v) is 

lost, but oj{ followed by translation (aQ+CQ)/2 is not, and o^+y (%) is 
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lost, but a^+y followed by translation (ao+CQ)/2 is not. Since the 

symmetry operations ( |0 0 0), (CTJ{(1/2 0 1/2) and ( |l/2 0 1/2) in 

the original cubic system are (Og|0 0 0), (ffx+yl® 0 1/2) and (|0 1/2 

1/2), respectively, in the tetragonal system, the resultant space group 

is P4/mnc. 

In this space group two metal (0,0,0, and 1/2,1/2,1/2) and two 

nonmetal (0,0,1/2 and 1/2,1/2,0) positions are consistent with the 

NaCl-type structure. In P4/mmm these two metal (0,0,0) and 

(1/2,1/2,1/2) positions are decoupled as are the two nonmetal (0,0,1/2) 

and (1/2,1/2,0) positions, allowing an order-disorder transition in 

addition to tetragonal distortion of the lattice, thus transition to 

P4/mnc is a more restrictive special case of the transition to P4/mmm. 

However, the P4/mmm case was eliminated because of a third-order 

invariant, thus the possibility of continuous transition to P4/mnc is 

also eliminated. 

In the Bjg case, the basis function transforms into itself with 

respect to E, C2, 2C2', i, % and 2?^, and transforms into itself with 

respect to 2C4, 2C2"» 2S4 and 2c^ only when these operations are 

combined with a lost translation such as (a°+c°)/2. When the symmetry 

operations, C42 (=€4) and oy+x ( = (Td) are combined with translational 

symmetry (a°+c°)/2, these two operations make a screw operation and a 

glide operation, respectively. Since (oy+y|l/2 0 1/2) in the original 

cubic system is (a^\l/2 1/2 1/2), an n glide, in the tetragonal system, 

the space group is P42/mnm. However, by the consideration of atomic 

positions, this symmetry is eliminated by the same reasoning as in the 

A2g case. 
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Similarly in the B2g, and B2u cases, the space groups yield 

P42/mmc, P42/nmc and P42/nnm respectively. However, consideration of 

the atomic positions indicates that those are all special cases of the 

unallowed transition to P4/mmm, thus the transitions corresponding to 

these representations are eliminated as continuous processes. 

In the A^u case, the combinations of essential symmetry operations 

i, 2S4, (ffz)» Zcy (a^, Oy), and 2a^ (a^+y, t^x-y) ^ith a translational 

operation such as (ao+CQ)/2 remain. The symmetry operations (|l/2 0 

1/2), (0%I1/2 0 1/2) and (|l/2 0 1/2) in the original cubic system 

are ( eg |l/2 1/2 0), (ff^+ylO 0 1/2) and (ctjjIO 1/2 1/2) in tetragonal 

system. Thus, the space group is P4/nnc. 

However, the two metal (0,0,0 and 1/2,1/2,1/2) and nonmetal (0,0,1/2 

and 1/2,1/2,0) positions in the tetragonal lattice are equivalent in 

this space group and the resultant structure is same as the I4/mmm 

solution at the r point. Thus this small representation is eliminated. 

In the A2U case, the symmetry operation (=^2) is lost, however, 

the product of this operation together with a lost translation, 

(ao+Co)/2 or (bq+CQ)/2, is retained. The symmetry operation (|l/2 0 

1/2) in the cubic structure is (,a \̂l/2 1/2 1/2) in the new tetragonal 

lattice, and this operation indicates an n glide. Thus, the space group 

is P4/nmm. In this space group the positions ±(1/4, 1/4, z) with z=l/4 

for the metal atoms and z=3/4 for nonmetal atoms are consistent with 

continuous transition to the NaCl-type structure. 

Since the combination of basis functions «l»!'I'2*3 invariant with 

respect to translational symmetry operations, it is necessary that this 

third-order product not be invariant with respect to the essential 
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symmetry operations if transition to P4/nmm is to occur continuously. 

The A2 U  s m a l l  re p r e s e n t a t i o n  i m p l i e s  t h a t  t h e  b a s i s  f u n c t i o n s  ( ^ 2 *  

*2) transform into -*3) with respect to inversion through the 

origin, and thus *1 *2*3 transforms into -«j»!<f>2"frs> and no third-order 

Invariant combination of basis functions exists. Thus, a second-order 

phase transition to a tetragonal structure with P4/nmm symmetry is 

possible from NaCl-type structure. 

The question remains, what primitive cubic space group results for 

the Y2=Y2=Y3=l/^3 solution with a=aQ. To answer this question, it is 

useful to examine basis functions that transform as the small A2u 

representation and as the translational symmetry of the P4/nmm solution. 

Noting that the basis function corresponding to c* is antisymmetric with 

respect to z and symmetric with respect to x and y, and that the 

function has the period CQ in the c direction, 4%=sin2nz is found to be 

a proper basis function, and 4%=sin2nx and 43=sin2ny are basis functions 

with the periods and respectively. Thus the cubic space group has 

the symmetry of v)fesin2iK+sin2ny+sin2nz. This basis function transforms 

into itself under all operations that permute x, y, and z and under all 

operations that change an even number of signs when combined with one of 

the centering translations of Fm3m. For example, €2% transforms (x, y, 

z) into (x, y, z) and is not invariant under C2x* However, C2x 

followed by (bQ+CQ)/2 takes into itself and is preserved in the lower 

symmetry cubic group. On the other hand, all symmetry operations that 

change an odd number of signs (C4, i, Oy and a^) are lost, and 

cannot be recovered by tacking on a lost translation. It follows that 

the space group of is P73m. 
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There are two 2-dimensional small representations at X point, Eg and 

By, as shown in Table 5. 

Table 5. Two-dimensional small representations for the X-point 

E C42 ^2z ^2x ^2(y-x) ^2y C2(x+y) 

( J  ? ) ( ?  J  )  ( ? - j )  ( - Î - J  ] ( - ?  n  

i ^42^ ( 'z ^4z (^x Oy_x C'y ®^x+y 

( J  
0 W-i 0 W 0 1 
-1 J I 0 i J I 1 0 ) ( - ?  U  

and Eu= Eg x Ajy. 

Landau's fourth-condition was tested and it was concluded that the 

vector representation and antisymmetric square of the small 

representation are orthogonal for the Eg and Ey representations, and 

hence the fourth condition is met by the 2-dimensional small 

representations at the X-point. 

As shown in Table 5, the small representations are complex. If the 

transition corresponds to a single wave vector k=c*, the basis functions 

are antisymmetric with respect to the translational symmetry operations, 

(bQ+CQ)/2 and (aQ+CQ)/2, and symmetric with respect to (ao+bQ)/2. Two 

basis functions which transform as the small representation of Table 5, 

and have the correct translational symmetry operations are found to be: 

<j)l=( s i n 2 IK c o s 2 ny+i s i n 2 ny c 0 s 2 nx ) c 0 s 2 riz s i n 2 itz 
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and 

*2=(sin2nxcos2ny-isin2nycos2nx)cos2nzsln2nz. 

The combined two real basis functions are of the form: 

\|/I=SLN2 IDCCOS2 iycos2 iizsln2 nz 

and 

ij/2=sin2 ivcos2 nxcos2 iizsin2 HZ. 

The allowed symmetries of the low-symmetry structure can be 

determined by examining these two basis functions. The single basis 

function transforms into itself under the operations E, C2y, 1 and 

Oy, and also under the operations C2z> 02%, Oz when those 

operations are combined with a lost translation (e.g. (ao+CQ)/2). The 

resultant space group is Pnnm, and the only positions allowed by the 

requirement of continuous transition to NaCl-type structure are the 

fixed 2-fold positions that form a body-centered cell. This means that 

the symmetry and continuity requirements are met only by a distortion 

that is equivalent to one at the F point and has been shown to yield a 

third-order invariant. 

In the Ey case, the real basis functions which are formed from 

complex conjugate basis functions with the period corresponding to k=c* 

are: 

\|/l=cos2 nysln2 nycos2 nz ( cos4 iix-cos4 ny ) 

and ^%=cos2nxsin2nxcos2nz(cos4ny-cos4nx), 
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and considering the remaining k vectors In the star, a* and b*, adds the 

basis functions 

t|3=cos2iKsln2itxcos2ity(cos4iiz-cos4iK), 

\jil4=cos2iizsin2iizcos2ity(cos4iDc-cos4iiz), 

T|5=cos2 nzsin2 iizcos2 rK( cos4 ny-cos4 HZ ), 

and i(;g=cos2itysln2itycos2 JK(cos4iiz-cos4ny). 

To carry on with a Landau theory analysis it is necessary to 

consider the existence of third-order, and the nature of fourth-order, 

invariant combinations of these basis functions. Since the functions 

transform into -^) under inversion through the origin, 

and thus transforms into it follows that a second-order phase 

transition corresponding to the Ey small representation at the X-point 

is allowed by Landau theory. 

As regards fourth-order invariants, considering how the functions 

behave under the symmetry operation of 0^ yields five fourth-order 

invariants, 

2 .  

4. 

5. 

It follows that G, to fourth-order, is of the form 
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G = Gq + Aïf + [Ci+(YI^Y2^+Y3^Y4^+Y5^Y6^)C2 

+ ( Y1^Y3^+Y3^Y5^+Y1^Y5^+Y2^Y4^+Y4^Y6^+Y2^Y6^)C3 

+ ( YI^Y4^+Y3^Y6^+Y2^Y5^)C4 + ( YI^Y6^+Y2^Y3^+Y4^Y5^)C5J >1^ 

and, because EYi^=l» and therefore (Evi^)^ = EYI^ + YI^YJ^=l, ^YI^ 

is eliminated in favor of Yi^Yj^» 

The minima of G subject to the normalization restraint EYi^=l are 

found by Legrange's method using X as the.undetermined multiplier when 

XYI + C2Y1Y2^ + C3YI(Y3̂  + Y5̂ ) + C/̂ Y1Y4̂  + C^yiYG^ = 0, 

XY2 + C2Y2Y1^ + C3Y2(Y4^ + Yg^) + C4Y2Y5^ + C5Y2Y3^ = 0, 

XY3 + C2Y3Y4̂  + C3Y3<Y1̂  + Y5̂ ) + C4Y3Y6̂  + C5Y3Y2̂  = 0, 

XY4 + C2Y4Y3̂  + C3Y4(Y2̂  + Y6̂ ) + C4Y4Y1^ + C5Y4Y5^ = 0, 

XY5 + C2Y5Y6̂  + C3Y5(yî  + Y3̂ ) + C4Y5Y2^ + C5Y5Y4^ = 0, 

XY6 + C2Y6Y5^ + C3Y6(Y2^ + Y4^) + C/^YGYS^ + C^Y^YI^ = 0> 

Yl̂  + Y2̂  + Y3̂  + Y4̂  + Y5̂  + YĜ  = 1. 

These equations have been solved for the cases 1) all YI ^ 0, 2) 

three YI ^ 0, 3) two  ̂ 0 and 4) one YI=l' Two types of solutions 

result, "discrete" solutions for which the nonzero YI are equal in 

magnitude and continuous solutions for which they are not. 

The discrete solutions found for minima in G  together with 

sufficient conditions relating the Cj's to yield the minima are listed 

below. 

I. Y^-l» Yi^i=0 Î K 0  f  ^  0 
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II. yi=Y2=1/^2, Y1>2=0 » C2 < 0 , Ci^2 ^ 0 

III. Yi=Y4=l/^2, Y2=Y3=Y5=Y6=0 ; C4 < 0 , > 0 

IV. Yi=Y6=l/42, y2=Y3=Y4=Y5=0 ; C5 < 0 , > 0 

V. Yl=Y3=Y5=^/^3, Y2=Y4=Y6=0 5 C3 < 0 , Cj^^3 > 0 

VI. yi=1^6 ; (C2+2C3+C4+C5)/12 < C2/4, C4/4, C5/4 and C3/3. 

The first solution results in the transition corresponding to a 

single wave vector k=c*, and the allowed symmetries of the low-symmetry 

structure can be determined by examining the single basis function 

The basis function transforms into itself under the operations E, 

^2z» ^2x' ^ and Oy when these operations are combined with a lost 

translation such as (bQ+CQ)/2. The resultant space group is Cmcm with 

A=B=C=AQ. 

The second solution yields the primitive orthorhombic cell with 

a=c=ao/^2, b=aQ, and the combination of basis functions has Pnmm 

symmetry. 

The remaining discrete solutions correspond to sets of wave vectors 

that imply loss of all centering translations of the original FmSm space 

group. The solutions labeled III, IV, V and VI yield the space groups 

P4/nmm, P42/mnm, P2j^3 and R32, respectively, with a=b=c=a° in all cases. 

However, an unusual feature of the solution to the minimization of G 

in the case under discussion is the existence of a continuum of minimum 

solutions between these discrete solutions. For example, the continuum 

solution between the Yi=Y2=l/")2 and the yi=Y4=1/^2 is YI'^Y2'^Y4'^0» 

Y3=y5=Y6=0, where yi» Y2 and Y4 generally differ in magnitude. Such a 

typical continuous solution is given below: 
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YI2= (C2C3+C3C4-C32)/(2(G2C3+C3C4+C2C4)-C22-C32-C42), 

Y2^= (C2C4+C3C4-C42)/(2(C2C3+C3C4+C2C4)-C22-C32-C42), 

Y4^= (C2C3+C2C4-C22)/(2(C2C3+C3C4+C2C4)-C22-C32-C42), 

where Yi's are functions of state because the Cj's are. For some choice 

of Cj['s these yi's yield a G lower than for any discrete solution, and 

thus these continuous solutions can yield minima as well, perhaps, as 

saddle points. For the case of negative C2, C3, C4 and positive C5, if 

C2 is sufficiently negative then the stable solution is the discrete 

solution Yl=Y2=l/J2 and the symmetry is Pnmm, but if C4 is sufficiently 

negative then YI=Y4=1/"J2 is the stable solution with the symmetry 

P42/mnm, and if C3 < 3/4C4 or C3 < 3/4C2, then the stable solution is 

Yi=Y3=Y5=l/43 and the symmetry is The boundary lines between 

these solutions and the continuum solutions, which are seen by the 

symmetry of an arbitrary mixture oî  ̂and \l/^ to have space group 

symmetry PZ^/c with a=aq, b=aQ, c=aQ and Y=90°, are given by 04-02=03 

and 02-04=03. 

There are similar continuum solutions for the region between the 

discrete Pnmm solution and the discrete P4/nmm solution (PZ^/m with 

a=b=c=aQ), and for the region between the P42/mnm solution and the 

P4/nmm solution (PmnZ^ with a=b=c=aQ). The solutions can be 

characterized in terms of the basis functions as follows: 

1/̂ 2(\|/]̂ +V|/2) • Pnmm discrete solution 

yi^+Y2V^+Y4^ ; PZj/c continuous solution 
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1/^2 • P42/mnm discrete solution 

: Pmn2i continuous solution 

: P4/nmm discrete solution 

Y1̂ +Y2̂ +Y6')/6 : P2i/m continuous solution. 

The Transition Corresponding to W-Polnt 

For the W-polnt there are six wave vectors in the star: 

k=±(a*+c*/2), ±(b*+a*/2) and ±(c*+b*/2). There are only three 

equivalent body-centered tetragonal space lattices implied by these six 

wave vectors. For example, k=a*+c*/2 and -a*-c*/2 are not equivalent in 

reciprocal space, but yield the same period. 

If the transition corresponds to either the wave vector k=a*+c*/2 or 

-a*-c*/2, all of the centering translations of FmSm are lost, but 

translations l/2aQ+l/2bQ+CQ, b^ and a^ remain, and yield a body-centered 

tetragonal cell with c=2aQ and a=aQ. 

There are four 1-dimensional and one 2-dimensional small 

representations for the W-point as shown in Table 6. 

First, the 1-dimensional small representations (which coincide with 

representations of the D2d point group) are considered. The basis 

functions for each of the representations have translation symmetry 

correspond to k and transform according to the small representations. 

The basis functions which have this translational symmetry and are 

symmetric with respect to all of the operations in the group of wave 

vectors k=a*+l/2c* and -a*-l/2c* are 
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= E"^COS2IK + E'^^COSZNY, 

and <l>2 = e~'^cos2nx + e^^cosZny, respectively. They are complex. 

Table 6. The small representations for the W-point 

E $42̂  C2z S42 Oy C2(y+x)0x 2̂(y-x) 

Ai 1 1 1 1 1 1 1 1 

A2 1 1 1 1 -1 -1 -1 -1 . 

B i  1  - 1  1  - 1  - 1  1 - 1  1  

B 2  1  - 1  1 - 1  1 - 1  1  - 1  

E f 1 0 U i 0 U-1 0 W-i owe 1 W 0 -i W 0 -1 W 0 i  ) 
I  0 1 j  I  0 -i j  I  0 -1 j  I  0 i J  U  0 j  I  i 0 j  1 -1 0 j  l -i 0 J 

Since the basis functions corresponding to a distortion must be real, 

the two real basis functions are generated by combining the complex 

basis functions: 

= l/J2(4%+4g)=cosnz(cos2nx+cos2ny) 

l/42i(*i-*2)=sinnz(cos2nx+cos2ny). 

Since the wave vectors k and -k yield the same period, and are related 

by a center of symmetry, the combinations of basis functions 

corresponding to such a pair of wave vectors have inversion symmetry in 
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addition to the D2d point group symmetry. The first basis function 

is totally symmetric with respect to the symmetry operations of D2(j and 

to inversion as well, it thus yields the space group I4/mmm. The 

symmetry of the second basis function is also I4/mmm but, with a 

different origin. Since the pairs of basis functions have the same 

period and symmetry, this 6-dimensional irreducible representation can 

be treated as a 3-dimensional irreducible representation by choosing one 

basis function out of each pair. 

Next, in the A2 case, the basis function is antisymmetric with 

respect to oy and but symmetric with respect to such operations 

together with the translational operation CQ. The space group is 

I4/mcm. The other two representations and B2 yield I4/mcm and 

I4/mmm, respectively. 

In the space group I4/mmm, two 4-fold metal (0, 0, z) with z=l/4, 

and (0, 1/2, 0) positions, and two 2-fold nonmetal (0, 0, 0), (0, 0, 

1/2), and a 4-fold nonmetal (0, 1/2, 1/4) position allow a combined 

order-disorder and displacive distortion. However, in the space group 

I4/mcm, two 4-fold metal (0, 0, 1/4) and (0, 1/2, 0) positions are 

fixed, and two 4-fold nonmetal (0, 0, 0) and (0, 1/2, 1/4) positions 

only allow the order-disorder transition. 

The totally symmetric real basis function corresponding to 

k=±(a*+l/2c*) was given above; y, z)=cosnz(cos2nx+cos2ny). The 

complete irreducible real representation is generated by the basis 

functions i(/i=i|/(x, y, z), ̂ >2=̂ 7, z, x) and i|̂ =v|;(z, x, y). 

The fourth-order terra in G to be minimized is 
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[CI+C2( YI^Y2^+Y2^Y3^+Y1^ Y3^) 1 ̂  

This function exhibits two possible minima subject to ZYi^=l: Yl=l> 

Y2=Y3=0 when C2 < 0 and YI=Y2=Y3=1/'^3 when C2 > 0. 

The former solution is the I4/mmm solution discussed above. The 

latter is a solution with the symmetry This function has the 

translational symmetry of a cubic lattice with a=2aQ and space group 

symmetry Pm3m. Similarly a cubic solution with a=2aQ corresponding to 

the the I4/mcm solution results when Yi=Y2=Y3=l/^3. 

For the 2-dimensional small representation x)=cosnzsin2nx 

and y) form a basis. The complete 6-dimensional irreducible 

representation is generated by the basis set x), y), 

y)f V'4=i(/(x, z), \ l j ^= \p (y ,  z )  and %=My,  z). 

These functions permute under the symmetry operations such that the 

invariant fourth-order combinations of basis functions are: 

2 ̂  2 ^ 2 2+^ 2 2 

,(/J^2^^2+^2^G2+^2^2 

It follows that G, to fourth-order, is of form 

G = Gq + Ayf + [Ci + ( YI^Y2^+Y3^Y4^+Y5^Y6^)C2 

+ (YI^Y3^+Y3^Y5^+YÎ^Y5^ +Y2^Y4^+Y4^Y6^+Y2^Y6^)C3 

+ (YI^Y4^+Y3^Y6^+Y2^Y5^)C4 + ( YI^ Y6^+Y2^ Y3^+ Y4^ Y5^ ) C5 ] . 
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This form for the Glbbs free energy was also found to be appropriate to 

X-polnt of FmSm (as discussed before) and As was previously 

found to be the case for X-polnt, between discrete solutions, there are 

three continuous solutions with variable contributions from several 

basis functions. 

The solutions can be characterized in terms of the basis functions 

as follows: 

• Fnimm discrete solution 

Y1'I'I+Y2^+Y4'/'4 : PẐ /c continuous solution 

l/i|2(if/2+̂ ) • P4/mbm discrete solution 

: Pnma continuous solution 

l/-j2(\j/ĵ +\|/g) ; P4/nmm discrete solution 

YiV^+Y2^+Y6V% : P2i/m continuous solution 

These unusual solutions permit consecutive second-order transition from 

Fm3m to P4/nmm symmetry at some temperature, and continuation to Pnma or 

P2i/m (corresponding to non-zero values for n, Y4 and vg or yi> Y2 and 

Yg respectively) at some lower temperature. 

This kind of possible thermal symmetry breaking has not been 

observed in NaCl-type transitions, however, as has been demonstrated 

here, it is consistent with Landau theory in cubic cases with two-

dimensional small representations and three independent k wave vectors. 

All the possible structures from second-order transition from 

NaCl-type are summarized with examples in Table 7. 
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Table 7. Allowed structures arising continuously from the NaCl-type 

Symmetry k vectors Space Space Lattice Atom positions Examples 

point group parameters 

r 0 R3m a=a°/'J2 0, 0, 0 (1) NiO(43) 

a=60° 1/2+8,1/2+6,1/2+8 (1) Fe0(44) 

Mn0(45) 

I4mm a=a°/'J2 0, 0, 0 (2) CoO(45) 

c=aO 0, 0, 1/2+8 (2) 

X a*,b*,c* P4/nmm a=a°/42 1/4,1/4,1/4+8 (2) 

c=a° 1/4,1/4,3/4+e (2) 

Cmcm a=a° 0, 1/4+8,1/4 (4) 

b=a° 0, 3/4+e,l/4 (4) " 

c~a° 

Pnmm a=a°/42 1/4,1/4,1/4+8 (2) CrN(46) 

b=a° 1/4,3/4,1/4+e (2) 

c=a°/-J2 

P2i3 a=a° 8, 8, 8 (4) FeSi(47) 

l/2+e,l/2+e,l/2+e (4) 

PTSm a=a° 1/4+8,1/4+8,1/4+8 (4) 

3/4+8,3/4+8,3/4+8 (4) 

R32 a=aO 0, 0, 0 (1) 

a=90° 0,1/2+8,-1/2-8 (3) 

1/2,1/2,1/2 (1) 

1/2, G,-e (3) 
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Table 7 (continued) 

Symmetry k vectors Space Space Lattice Atom positions Examples 

point group parameters 

X P42/mnm a=a° 1/4+5,1/4+5, 0 (4) 

b=bO l/4-e,3/4-e, 0 (4) 

c=c° 

P4/nmm a=a° 0, 0, 0 (2) 

b=bO 0,1/2,1/2+5 (2) 

C=CO 0, 0,1/2 (2) 

0 ,  1 / 2 ,  €  ( 2 )  

P2i/m a=aO 0+5,1/4+8,1/4 (2) 

b«bO 1/2+5,3/4+6,1/4 (2) 

c=c° 0+5,3/4+2,1/4 (2) 

Y=90° 1/2+5,1/4+G, 1/4 (2) 

P2i/b a=a° 

B=BO 

c=c° 

Y=90° 

Pmn2i a=a° 

b=b° 

c=c° 

0,  0 ,  0  (2 )  

1 / 2 ,  0 ,  0  ( 2 )  

0 ,  1 / 2 ,  0  ( 2 )  

1 / 2 , 1 / 2 ,  0  ( 2 )  

0, 0+5,0+G (2) 

0,1/2+5,1/2+G (2) 

0, 0+5,1/2+G (2) 

0, 1/2+5,0+G (2) 
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Symmetry k vectors Space Space Lattice Atom positions Examples 

point group parameters 

L (a*+b*+c*)/2 RTm 

(a*+b*-c*)/2 

(a*-b*+c*)/2 

(-a*+b*+c*)/2 Fm3m 

A=W3/2AO 

a=cos~^5/6 

A=2AO 

0 ,  0 ,  0  (1 )  

1/2,1/2,1/2 (1) 

0, 0, 0 (4) 

1/2,1/2,1/2 (4) 

0, 1/4,1/4 (24) 

1/4,1/4,1/4 (8) 

1/4+5, 0, 0 (24) 

SCI_XS(3) 

ZRI_XS(40) 

Fd3m a=2a° 0 ,  0 ,  0  (16 )  

1 / 2 , 1 / 2 , 1 / 2  ( 1 6 )  Yi_xSe(48) 

1/4+5,1/4+5,1/4+5(32) Zr3S4(49) 

C2/m a=j3/2aO 

B=AO/42 

c=^3/2a° 

(3=COS~^-1/3 

0 ,  0 ,  0  (2 )  

0 ,  1 / 2 , 1 / 2  ( 2 )  

1/4+5, 0, 3/4+e(4) 

AuSe(50) 

C2/C a=J3/2aO 

b=a°/-J2 

c=J3/2a° 

P=cos"l-l/3 

1/4,1/4, 0 (4) 

0,1/4+5,1/4 (4) 

C2/m a=2a° 

A=2BO 

c=2c° 

E=9O° 

(a)*, (b), (c), (d), (e) 

(f), 2(i), (j); (j), (h) 

(g), 4(i) 

^Wyckoff notation. 
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Table 7 (continued) 

Symmetry k vectors Space Space Lattice Atom positions Examples 

point group parameters 

C2/C A=2AO 

A=2BO 

C=2CO 

0=90° 

(a), (b), (c), 3(d), (f); 

2(e), 3(f) 

W ±(a*+b*/2) 

±(b*+c*/2) 

±(c*+a*/2) 

I4/mmm a=a° 

c=2a° 

0 ,  0 ,  0  ( 2 )  

0 ,  0 ,  1 / 2  ( 2 )  

0, 1/2, 1/4 (4) 

0, 0, 1/4+5 (4) 

0, 1/2, 0 (4) 

NBNI_X(51) 

Pm3n i=2a° 0,1/4+6,1/4+G (24) 

1/4+a, 0, 0 (12) 

1/4,1/4,1/4(8) 

1/4, 0, 1/2 (6) 

0, 1/4,1/2 (6) 

Pmma a=a° 

b=a° 

c=2a° 

(a), (d), (e), (f); 

(b), (c), (e), (f) 

Fmmm a=42aO 0, 0, 0 (4) 

b=j2aO 0, 0, 1/2 (4) 

c=2cO 1/4,1/4,1/4 (8) 

1/4, 1/4, 0 (8) 

1/4+5, 0, 0 (8) 
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Table 7 (continued) 

Symmetry k vectors Space Space Lattice Atom positions Examples 

point group parameters 

P4/rabm a=2aO (a), (d), (j), (g); 

c=c° (a), (c), (d), (1); 

(b), (c), (e), (i) 

P4/nmm a=2a° 

c=c° 

Pa3 a=2aO (a), (b), (d); 

(c), (d) 

P2i/c a=a° (a), (b), 3(e); 

b=2bO (b), (d), 3(e) 

c=s2c° 

P=90° 

P2i/m a=2aO (a), (b), 4(e), (f); 

b=2bO (c), (d), 4(e), (f) 

c=c° 

0=90° 

Pnma a=2a° (b), (a), 4(c), (d); 

b=2bO 4(c), 2(d) 

c=s2c° 

Rjm a=2a° (a), (b), (d), (e), 

«=90° 2(h), (g), (f); (c), 

3(h), (1) 
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EXPERIMENTAL 

Synthesis 

Transition metal sulfides and selenides 

The binary compounds, Zr-S, Y-Se and Lu-S, were prepared by heating 

mixtures of metal strips and elemental sulfur or selenium. The metals 

were obtained from Ames Laboratory (99.9% purity), and sulfur powder and 

selenium shot were obtained from Alfa Ventron (99.999% purity). The 

desired amounts of metals and nonmetals (for the samples with starting 

composition in the range X/M=0.9~1.5, where X=S or Se and M=Zr or Y or 

Lu) were placed in fused silica tubes which were previously outgassed 

using an oxygen-gas torch. The sample tubes were evacuated to about 

10"6 Torr. residual pressure, sealed and heated for several days in a 

tube furnace. The temperature was raised gradually from 450° to 850°C. 

When the sulfur (selenium) was no longer visible in the tubes, the 

products were sulfur (selenium) rich compounds coating the outside of 

unreacted metal strips. To achieve equilibrium more rapidly, the 

samples were ground, pelletized, and annealed under high vacuum ( 10"̂  

Torr ) at about 1400~1750®C in an inductively heated tungsten Knudsen 

cell. The temperatures were estimated using optical pyrometer 

measurements. 

Transition metal nitride 

The NbNi_x samples were synthesized by heating a Nb foil In a slowly 

flowing equivolume mixture of NH3 and N2 at temperatures In the 

neighborhood of 1300°C. The niobium foil was obtained from Alfa Ventron 
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(99.8% purity) and the ammonia and nitrogen gases were 99.999% pure 

(with less than 2 ppm of oxygen content). The foil was held In a tube 

that was initially Ta and finally Ta2N. This tube was heated 

Inductively using an induction coll external to a water cooled fused 

silica enclosure. 

Powder Diffraction 

Gulnler x-ray powder diffraction 

For the initial phase analysis of the sample, the x-ray powder 

patterns were taken using a Guinier Camera (Enraf Nonius or IRDAB 

XDC-700) provided with Cu (Af=1.54056Â) radiation, silicon powder (NBS 

Standard Reference Material 640a ) was mixed with the sample and used as 

a standard. 

High-temperature x-ray diffraction 

The structures and phase transitions were studied using a Rigaku 0-0 

powder dlffTactometer equipped with a Buhler sample chamber and 

controlled high-temperature power supply. The sample chamber consists 

of a cylindrical, doubled-walled, water cooled pot made of stainless 

steel with an irradiation window of beryllium and a lid carrying two 

pairs of electrodes for heating the samples directly and by radiation. 

The residual pressure Inside the chamber was held in the low 10"^ Torr. 

region using a turbomolecular pump which was attached as close as 

possible to the chamber to maximize pumping efficiency. The sample 

chamber was connected to a glove box which was filled with nitrogen gas 

to protect the sample and chamber from moisture. Usually the samples 
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were held on a Mo holder and the temperatures were measured using WRe-

thermocouples. The temperature can be controlled from room temperature 

up to 2000*0. 

Data collection 

Cu Kpj radiation was used and the diffracted beam was monochromatized 

using a graphite exit monochromator. The diffractometer data were taken 

using 6-0 stepscan procedure and the step size was 0.02° in 20. The 

counting time used was 960 second per degree(0). 

X-ray diffraction data analysis 

For structure analysis, a full-profile pattern fitting Rietveld-type 

program KDBW,^^ a local modification of the original DBW 3.2,53 was 

used. The local modification from Dr. Jacobson's group includes: i) 

adoption of several additional profile functions, ii) sample area 

correction, iii) improved preferred orientation correction and iv) 

better least-squares, the maximum neighborhood method. 

The refined structure was obtained from the powder data assuming 

mixed KQJ1-KQJ2 radiation. Generally parameters refined for each 

diffraction data analysis were: scale factor, unit cell parameters, 

background parameters, atomic positions, zero point, overall isotropic 

thermal parameters or individual isotropic thermal parameters, the 

profile shape parameters, peak half-width parameters, occupation 

parameters and the sample area correction parameters. The Pearson VII 

function was used to describe peak shapes in this research, since these 

peak shapes were typically between Gaussian and Lorentzian. 

The definitions of various R factors which were cited in this 

research are as follows: 
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Ry=Z|4lg (obs)-^lB(calc) I / E^llgCobs); the Bragg R factor 

Hp = [II(Yi (obs)-l/c Yj[ (calc))] / HYj (obs); the pattern R 

factor 

Rwp = I (Yi (obs) - 1/cYi (calc))2 / Scoj (Yj (obs))2]l/2. 

the weighted pattern R-factor 

where Ig is the intensity assigned to a particular Bragg reflection, Yj[ 

is the intensity observed at the ith step in the step-scanned pattern, c 

is a scale factor and wj is the weight. Ry closely resembles the 

"conventional" R factor widely used in single-crystal structure 

analysis. R^p is the quantity that Is actually minimized in the least 

squares refinement procedure. 

In much, but not all, of this research, single-crystal studies were 

not possible because of the nature of the formation of process in which 

multiple twinning predominated. However, because the starting models 

can be severely restricted using the Landau-theory of symmetry and phase 

transitions, it was possible to solve a number of distorted and ordered 

structures by combining high-temperature x-ray diffraction and Rletveld-

type full-profile refinement. 

Single-crystal technique 

The single-crystal data were collected with an Enraf-Nonlus CAD4 

four-circle diffractometer (for Y5S7) or with a Rigaku AFC6 rotating 
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anode four-circle dlffractometer (for Cr^N) and monochromated Mo K* 

radiation. Additional details are described in section on the 

Individual compounds. 

Composition Analysis 

Final compositions of the sulfides and selenides under consideration 

were investigated by oxidizing to their highest oxidized form in a Pt 

crucible in air at about 900°C. The composition of NbN^.jj was 

determined by vacuum fusion analysis in addition to combustion analysis. 
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SECTION I. ORDER-DISORDER TRANSITION, AND STRUCTURES OF THE 

NONSTOICHIOMETRIC MONOSULFIDES OF ZIRCONIUM 
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INTRODUCTION 

The nonstoichlometric monosulfides of zirconium have been studied by 

a number of groups since the earliest investigation of defect NaCl-type 

structure of Zrj.j^S by Strotzer et al. (1939)Hahn et al. (1951)49 

prepared a phase labeled ZrgS^ and proposed it to be cubic a=10.25Â, in 

which half of the metal sites were fully occupied and half were 

statistically occupied. It was suggested by Jellinek (1963)6 that the 

superstructure of ZrS might have an ordered cubic superstructure based 

on the NaCl-type structure or a slight rhombohedral distortion of the 

cubic lattice. McTaggert and Wadsley^^ found that a defect 

NaCl-structure of ZrSQg-ZrSig has a primitive cell of 10.25Â. 

Nguyen^S examined the phases at a variety of compositions and reported 

that Zr2S and WC type coexist when S/Zr=0.88, UC type alone occurs for 

S/Zr=0.9 and 0.99, WC type coexists with the NaCl-type superstructure 

when S/Zr=1.05 and 1.21, and the NaCl-type superstructure occurs alone 

for S/Zr=1.28 and 1.30. Conard and Franzen investigated a single 

crystal of ZrQ.yyS to determine the nature of the ordering, and a 

monoclinlc superstructure was found.& Furthermore, defect ZrS has been 

found to be a superconductor,and electron diffraction results^G 

showed a 2x2 superstructure together with ordering in every third plane 

perpendicular to the TIC rhombohedral direction. This result is very 

similar to that found for Sci_xS.3 
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RESULTS 

In this research, a sample with the composition S/Zr=1.34 was 

prepared and the structure was investigated using the high-temperature 

x-ray diffractometer at temperatures up to 1500°C. At temperatures 

below 1250±20°C the NaCl-type superstructure was observed, while for 

higher temperatures the x-ray diffraction was that of NaCl-type alone, 

except that after a few hours at the highest temperatures the WC-type 

pattern was observed to grow into diffractometer data. 

A sample with S/Zr=1.34 was examined at room temperature and the 

data were analyzed by Rietveld analysis. A fit to a superstructure of 

the CdCl2 type with RJm symmetry was obtained (profile R=12.9%, derived 

Bragg R factor=4.6%). Two weak impurity lines at 29=28.7 and 31.6° were 

identified as the two strongest diffraction lines of monoclinic Zr02, 

indicating that the zirconium sulfide sample was slightly surface 

oxidized at high temperature even though the residual pressure at the 

sample was less than 10~® Torr. The following parameters were refined: 

overall scale factors, zero-point, hexagonal a and c in RJm, peak half-

width, the profile parameters, background, sample area, sulfur position 

parameters. The zirconium positions are fixed, and the refined sulfur 

positions did not vary from their locations in the cubic structure. The 

final refined structural parameters in the hexagonal cell are given in 

Table 8. 

The rhombohedral lattice parameters are «=33.377(3)° and 

a=6.3194(6)Â (see Figure 2). The occupation parameters are in excellent 

agreement with the combustion analysis results which yielded 
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S/Zr=1.34(l). The model fits the data well not only in the sense of a 

low Bragg R value (see Table 9 for and Icalc )* but also in the 

sense of fitting the split and weak peaks relative to the cubic 

structure. The calculated and observed diffraction patterns are shown 

in Figure 3. 

Table 8. Refined parameters for Zr^.xS in the hexagonal^ 

Atom Position Fractional Occupancy Thermal 

Zr(a)b x=0, y=0, z=0 1.05(5) 0.7(3) 

Zr(b) x=0, y=0, z=l/2 0.50(2) 0.8(3) 

S(c) x=0, y=0, 2=0.249(1) 1.0 0.3(3) 

aUnit cell : a=3.6295, c=17.885(2) Â. 

bwyckoff notation. 

The room temperature Guinier powder diffraction pattern of a sample 

with S/Zr=1.37 was found to exhibit three very weak (barely discernible) 

diffraction lines at 20=16.73, 18.32, 22.61°. These lines could be 

indexed using the cell that results from tripling the periodicity along 

the TlO direction, yielding a monoclinic (pseudoorthorhombic) cell with 

a=10.86Â, b=6.28Â, and c=17.88Â and a, (3, and Y all essentially 90°. 
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FIGURE 2. The cubic unit cell of substructure NaCl-type zirconium 

monosulfide and the inscribed rhombohedral cell that results 

from ordering of metal vacancies in alternate planes along 

the 111 direction (differentiated by open and dark circles). 

The rhomboheral angle would be 33.56° if there were no 

relaxation of the cubic lattice 
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Calculated 26 values and calculated and observed intensities for 

Zri^jjS lines identified by hexagonal indexing 

20 Icalc lobs superstructure 

(«2 and o%) (xlO"^) (xlO"^) reflections 

28.82 8.48 9.31 X 

28.99 . 4.23 4.61 X 

29.95 5.16 5.27 

30.03 2.57 2.65 

30.11 1.54 1.58 

30.19 0.76 0.79 

34.86 102. 108. 

34.95 50.6 53.8 

38.08 4.88 4.94 X 

38.18 2.43 2.45 X 

45.61 0.99 1.11 X 

45.72 2.44 2.72 X 

45.73 0.49 0.55 X 

45.84 1.21 1.35 X 

50.02 33.5 32.8 

50.15 16.7 16.4 

50.23 33.1 32.4 

50.36 16.4 16.1 

52.68 3.28 3.15 X 

52.82 1.63 1.57 X 

58.95 1.19 1.16 X 

59.14 0.59 0.58 X 

59.41 2.48 2.45 

59.57 1.23 1.22 

59.60 4.90 4.87 

59.69 • 2.43 2.44 

59.75 2.43 2.45 
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Table 9 (continued) 

h k 1 20 Icalc ^obs superstructure 

(hex) («1 and o^) (xlO"^) (xlO~^) reflections 

2 0 2 59.85 1.21 1.21 

0 0 12 62.24 5.47 6.05 

0 0 12 62.40 2.72 3.00 

0 2 4 62.60 16.11 17.88 

0 2 4 62.77 8.01 8.93 

0 1 11 64.47 0.77 0.81 X 

0 1 11 64.64 0.38 0.40 X 

2 0 5 64.74 0.92 0.96 X 

2 0 5 64.91 0.46 0.48 X 

1 1 9  70.17 1.49 1.56 X 

0 2 7 70.26 0.61 0.64 X 

1 1 9  70.37 0.74 0.78 X 

0 2 7 70.45 0.30 0.32 X 

2 0 8 73.61 9.66 10.02 

2 0 8 73.82 4.80 4.98 

1 0 13 75.35 0.63 0.65 X 

1 0 13 75.56 0.31 0.33 X 

0 0 15 80.48 0.12 0.13 X 

0 0 15 80.72 0.06 0.06 X 

2 11 81.06 0.89 0.91 X 

0 1 14 81.21 0.85 0.88 

2 11 81.29 0.44 0.45 X 

0 1 14 81.45 0.43 0.44 

0 2 10 81.46 0.84 0.87 

0 2 10 81.69 0.42 0.43 

12 2 81.70 1.67 1.72 

12 2 81.94 0.83 0.86 
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h k 1 2© Icalc ^obs superstructure 

(hex) (a^ and o%) (xlO"^) (xlO~^) reflections 

1 1 12 83.95 13.4 13.9 

1 1 12 84.19 6.70 6.89 

2 1 4 84.27 13.33 13.73 

2 1 4 84.52 6.64 6.82 

2 0 11 85.95 0.33 0.33 X 

1 2 5 86.19 0.80 0.81 X 

2 0 11 86.20 0.16 0.17 X 

1 2 5 86.45 0.40 0.40 X 
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DISCUSSION 

The metal deficient monosulfide exists for a narrow range of 

stoichiometry about the composition given by S/Zr=1.32. The vacancies 

order at lower temperature, and this ordering corresponds to the L point 

of Brillouln zone. Among the possible solutions from Landau theory the 

solution corresponding to R3m ordering is easily chosen based on the 

splitting of lines and extra lines (relative to NaCl-type) in a Guinier 

powder pattern. This compound occurs in a structure that can be 

described rather accurately as CdCl2 type (RTm symmetry), a 

superstructure that arises from a vacancy ordering in alternate planes 

perpendicular to the body diagonal of a cubic NaCl-type cell. There is 

a slight relaxation (from a=33.56° in the cubic structure to 06=33.38° in 

the rhombohedral structure). The vacancies in this structure order 

weakly within the planes, and this ordering triples the periodicity 

along the TlO rhombohedral direction. These results are in good 

agreement with those from electron diffraction experiments^^ and show a 

remarkable similarity to those found for Scj.j^S. 

A question that remains is the identity of the previously reported 

monoclinic Zrg.yyS structure. It appears likely that this structure is 

closely related to that which results from the secondary ordering along 

the no direction of the rhombohedral lattice. Since the superstructure 

reflections reported in reference (8) were very weak, the reported 

monoclinic structure could be in error, a suggestion that was made 

previously.3 Furthermore, the reported structure was based on data from 

a single crystal, and it is possible when studying ordering processes to 
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obtain Individual single-crystals in which the ordering Is not that 

characteristic of the bulk. Accordingly, it is concluded here that the 

best description of the ordering in bulk Zr^.j^S is that it occurs 

Initially In alternate planes along the cubic body diagonal at about 

1250°C. Since this ordering can, by symmetry arguments presented in the 

previous chapter, occur via a second-order transition, and since the 

results gave no evidence of a two-phase mixture, it is suggested that 

this ordering transition is second-order. There is then a further weak 

ordering along the TlO direction so as to triple the periodicity In this 

direction. 
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SECTION II. INVESTIGATION OF THERMAL SYMMETRY-BREAKING TRANSITION 

IN NBNI_X 
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INTRODUCTION 

The Nb-N system in the vicinity of the mononitride has been studied 

previously by Brauer and Esselborn^® and Guard, Savage and Swarthout.il 

The thermal behavior of nitrogen deficient niobium mononitride has been 

investigated by neutron diffraction^^ and c/a variation with temperature 

indicates a continuous structure change from cubic to tetragonal when 

the temperature Is lowered 1400°~1600°C (with the temperature of the 

transition depending upon the N/Nb ratio). The structure reported by 

Chrlstensen from neutron diffraction^^ does not fit this observation. A 

more recent neutron diffraction result yielded a tetragonal cell with 

a=b=a°, c=2a° and I4/mmm symmetry, in agreement with the conclusion 

reached below. 



www.manaraa.com

67 

RESULT AND DISCUSSION 

The NbNi_x samples were synthesized by the method discussed 

previously. The product was analyzed by photoelectron spectrum, vacuum 

fusion and combustion analysis. No extraneous metal peaks (e.g. peaks 

from Ta arising from interaction with the sample holder) were observed 

in the photoelectron spectrum. The vacuum fusion analysis yielded 1600 

ppm oxygen and 3100 ppm hydrogen. Mass gain upon synthesis and upon 

combustion in air to Nb205, when corrected for the 0 and H impurity, 

both yielded N/Nb=0.77. The hydrogen was removed by outgasslng the 

sample in high vacuum at ISOQOC. 

The final procedures (several samples were studied, but the 

technique was refined and applied to the final sample) were as follows; 

1) a sample was prepared at 1300°C in an equimolar mixture of N2 and 

NH3 at a pressure of 1 atm for several hours, 

2) the sample was analyzed by room temperature Guinier x-ray 

diffraction and only tetragonal NbNj.j^ was found to be present at 

the x-ray level of detection, 

3) the sample was finely ground and placed in the difftactometer 

chamber, 

4) the temperature was raised to 1500°C until outgasslng was 

completed, 

5) the sample was systematically cooled to room temperature, 

periodically scanning over the peaks that originated in the cubic 

3, 1, 1 peak, 
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6) diffraction data were collected from the sample cooled to room 

temperature for 20° <_20 < 95° during a 9 hour scan, 

7) the room temperature diffraction data were used in a Rietveld 

full-profile refinement, as discussed in this section. 

The previous report^^ of the cubic to tetragonal transition in 

NbNi_x indicates a continuous variation of c/a toward unity with 

increasing temperature, and stability of the cubic form at high 

temperature. In this work a continuous coalescence of the peaks 

originating in the cubic 3, 1, 1 family was observed in agreement with 

this result. Thus the high-temperature x-ray diffraction patterns of 

NbNi_x confirmed the apparent symmetry-breaking character of the 

transition, i.e., the approach of c/a toward unity as the temperature 

approached 1200°C. Accordingly, the structures corresponding to the 

various irreducible representations of Fm3m symmetry were examined. It 

was clear from the outset that the low temperature diffraction pattern 

could be indexed on a tetragonal basis, and thus irreducible 

representations leading to the tetragonal symmetry were examined. It 

was also clear, because of the existence of superstructure reflections, 

that the irreducible representation in question is at some reciprocal 

space point other than k=0, thus the solutions at X, L, or W yielding 

tetragonal symmetry were considered. 

As shown in the earlier discussion three tetragonal space-groups are 

found at W point: I4/mmm, P4/mbm and P4/nmm (a=2a°, c=a°). Also there 

are three tetragonal space-groups at the X point: P4/nmm (a=a°/^2, 

c=a°), P42/mmm and P4/nmm(a=b=a°, c=a°). 
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There are five weak superstructure reflections (at 26=20.5°, 28.8°, 

37.3°, 57.0° and 80.6°) observed in the diffraction pattern of 

tetragonal NbNi_x (see Figure 4). All the possible tetragonal solutions 

were considered, and only the structure with I4/mmm symmetry yields 

calculated Bragg diffraction for all five superstructure reflections. 

An essential feature in obtaining a satisfactory fit to the 

superstructure data is the variation of the z parameter of the Nb 

position in I4/mmm away from the NaCl-type value of 1/4. If the Nb 

positions are fixed at the NaCl-type positions, no observable Intensity 

is calculated for the three higher angle superstructure reflections. The 

final refined parameters for the NbNj.x structure are given in Table 10 

and the structure is shown in Figure 5. 

Table 10. Refined Parameters for NbNi_x in Tetragonal Cell® 

Atom Site symmetry X y z Fractional Occupancy 

N1 4/mmm 0 0 0 0.08 

N2 4/mmm 0 0 1/2 1.00 

N3 7m2 0 1/2 1/4 1.00 

Nbl 4mm 0 0 0.24373 1.00 

Nb2 mmm 0 1/2 0 1.00 

a a=4.3860(2), c=8.6606(5), R=13.93%, R„=18.90%, Bragg R=2.97%. 

The refined structure in I4/mmm differs from that in I5m2 only in 

the fixed position of the Nb atom at 0 1/2 0 (which was at 0 1/2 0.0034 
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in the structure refined in I7m2).^® The refinement I4/mmm yielded R 

values equivalent to those obtained in I5m2, and thus this is the 

preferred description. 

The space group I5m2 could result from a distortion corresponding to 

an irreducible representation of I4/mmm at k=0 compatible with the 

totally symmetric irreducible representation of Fm3m at W point, and 

thus a continuous symmetry breaking to I3m2 through I4/mmm would be 

possible. Such distortion is not required by the observed data. 
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jO" 

Figure 4. The structure of NbNj^.^. Hatched circles indicate nibium atom 

positions and filled circles indicate nitrogen atom positions. 

Open circles are partly filled nitrogen atom positions 
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Figure 5. Comparison of calculated (top) and observed (bottom) powder 

diffraction for NbN^.jj. Vertical strokes indicate calculated 

Bragg-peak positions. The diffractions at 39° and 59° are 

from Nb2N and the sample holder, respectively 
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CONCLUSION 

The powder x-ray diffraction data for NhN^.y (x=0.23) have been 

Interpreted with the aid of Landau theory and Rietveld full-profile 

refinement to yield the structure of low-temperature tetragonal from of 

nitrogen deficient niobium mononitride. The space group is I4/mmm and 

the lattice parameters are: a^Qt=4.386(Â)=a° and Ctet=8.66lA=2a°. The 

vacancies are ordered in alternate N-containing planes and ABAB**» 

stacking of the planes. There is also a slight relaxation of Nb 

positions relative to NaCl-type positions along the c direction. 
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SECTION III. VACANCY ORDERING IN Yj. 



www.manaraa.com

75 

INTRODUCTION 

The compound YSe has been observed to have the NaCl-type structure 

with a wide range of homogeneity, and Y2Se3 has been observed to be 

isostructural with SC2S3 with space group Fddd as reported by Dismukes 

and White.57 

During the investigation of a nonstoichiometric phase between YSe 

and 72863, a defect, vacancy ordered phase relating to NaCl-type 

structure was found. 
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RESULT AND DISCUSSION 

A sample with Initial composition Se/Y=1.3 was prepared as 

previously described. The sample quenched from 1450°C (using induction 

heating) provided a simple powder pattern of the NaCl-type structure. 

This sample, when annealed at about 600°C for two weeks and cooled 

slowly to room temperature over several days, gave evidence of vacancy 

ordering. The structure and order-disorder transition of Y^.^Se were 

studied using high-temperature x-ray diffraction at temperatures up to 

400°C. At temperatures below 275°±25°C the ordered structure was 

observed, while for the higher temperatures the simple NaCl-type x-ray 

diffraction pattern was observed. 

The RTm vacancy ordering found for Zrj.^S and Scj.^S does not 

provide a fit to the diffraction pattern observed for Yj.^Se (figure 6). 

However, the positions of all observed superstructure diffractions were 

fit by both the Fm3m and Fd3m symmetries with a cell twice that of 

parent cubic cell. In an attempt to distinguish between these two 

models the structure was refined in both the Fm3m and Fd3m space groups 

and the results were compared (Table 11). The Rietveld full-profile 

refinement procedure was used. 

The observed superstructure reflections were of such low intensity 

that the usual R factors for the two structural models were the same for 

the two models. The profile R=13.7% and the derived Bragg R=4.2%. 

However, the thermal parameters are substantially different for the 

two models (Table 11) providing an indication that the FdSm model Is 

closer to the correct structure. This conclusion Is also favored by the 
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lack of some superstructure reflections, for example, at 20=35.2, which 

Is the location of the 0 2 4 reflection which is allowed for FmSm but 

not for Fd3m. The refined lattice parameter is 11.4211(4)Â. 

This nonstoichiometric material has a structure which is closely 

related to CaggGe structure (The structure of TI2C) as described in 

Figure 7. 

The superstructure reflections were not observed in a sample at 

temperatures above 300°C, but were found to reappear in the sample when 

held at 250°C. Thus the order-disorder transition occurs at 275°±25°C. 

The final composition of Y^.^Se was determined as Y/Se=0.78 by 

volumetric analysis (Ames Laboratory Services) using complexometry with 

EDTA. 
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calculated Bragg peak positions 
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Table 11. Comparison of Fm3m and FdSm refinement parameters 

Space group Yttrium Selenium Number 

per cell 

Percent 

occupied 

Thermal 

parameter(Â) 

o
 

o
 

o
 

4 92.5 0.611.0 

Fm3m 1/2,1/2,1/2 4 32.5 -1.7±2.0 

0,1/4,1/4 24 79.0 1.610.5 

1/4,1/4,1/4 8 100.0 2.4+0.2 

1/4,0,0 24 100.0 2.4±0.2 

FdSm 

o
 

o
 

o
 16 59.3 1.510.2 

1/2,0,0 16 90.6 0.910.2 

1/4,1/4,1/4 32 100.0 2.410.2 
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CONCLUSION 

In common with Se and Zr monosulfides, Y monoselenide occurs with 

vacancies on the metal sublattlce, and the fraction of sites vacant can 

be as large as 0.22. Also in common with these sulfides, the vacancies 

in defect yttrium monoselenides order at lower temperatures (275°±25°C 

for YygSe), and this ordering corresponds to the L point of the 

Brillouin zone. In the case of Y^.jjSe, however, the ordering 

corresponds to a combination of all four vectors in the star and a cubic 

structure with twice the NaCl-type lattice parameter results. Landau 

theory yields two possible structures, one with Fm3m symmetry and the 

other with Fd3m symmetry. The consideration of superstructure lines and 

thermal parameters calculated for the two models suggests that the Fd3m 

solution is the correct one. 
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SECTION IV. THE STRUCTURE OF A NEW INTERMEDIATE LU2+XS3 PHASE 
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INTRODUCTION 

Lutetium sulfide is unique among the lanthanide monosuifides in that 

the nonstoichiometric composition extends significantly on either side 

of the stoichiometric monosulfide while maintaining the NaCl-type 

structure. The wide range of homogeneity, which apparently results from 

the presence of vacancies in the sulfur or metal sublattices, extends 

from LuSo.75 to LuSi.go'^^ 

During studies of the high temperature vaporization^^ of the Lu-S 

system a new intermediate phase, LU3S4, with a structure closely related 

to the SC2S3 structure was found between the sulfur-rich end of the 

monosulfide homogeneity range and LU2S3. 

Lutetium and scandium are both typically trivalent, and because of 

the lanthanide contraction, and a corresponding increase in 

electronegativity of lutetium, structural and high-temperature behavior 

of lutetium systems are similar to the corresponding scandium systems. 

One difference, however, is in the sesquisulfides. Whereas LU2S3 has 

the a-Al203 type structure,SC2S3 has its own structure type as 

reported by Dismukes and White.57*61 This structure is closely related 

to that of NaCl, but the unit cell is twelve times larger than the 

parent cubic unit cell due to a complex vacancy ordering in which 

one-third of scandium atomic positions are vacant. This structure is 

one of two variants that can result from removing one cis metal-metal 

edge from every SSC5/2 octahedron. The orthorhombic dimensions of SC2S3 

are aorth=2ao» borth=^2&o Corthr^^^Bo where a^ is the dimension of the 
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parent NaCl-type sublattlce, and the space group of this structure is 

Fddd. 

The crystal structure of LU3S4 was determined based on 

single-crystal data by Hariharan et al.9 In this reinvestigation of the 

phases Intermediate between lutetium monosulfide and the sesquisulfide, 

a new interpretation of this structure is presented based on powder 

diffraction data. The new intermediate phase, LU2+XS3, reported here is 

basically isostructural with SC2S3, and it is the only example of a 

lanthanide-sulfide with the ScgSg structure type. 
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EXPERIMENTAL DETAILS 

The samples with initial composition range S/Lu=l,0~1.5 were 

prepared as previously described. 

For the initial phase analysis of the samples, the x-ray powder 

patterns were taken using a Guinier Camera (Enraf Nonius) provided with 

Cu Ka radiation and a microphotometer was used to estimate the relative 

Intensities. The phase transitions were studied using a Rigaku 6-0 

dlffractometer utilizing an E Buhler sample chamber and high temperature 

power supply. For the final data analysis the room temperature 

diffraction data were taken using an Elliot GX-21 rotating anode x-ray 

source using a vertical bent pyrolitic graphite (002) monochromator at 

40KV and 200 mA. The finely ground powder sample was held in a glass 

capillary (diameter 0.5mm) which was rotated to minimize the effects of 

preferred orientation. The x-ray diffraction data were analyzed using a 

full-profile pattern fitting (Rletveld-type) program.52 
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RESULTS 

When a sample with the composition S/Lu=1.5 was annealed at about 

1400*C for several hours, the powder pattern of the quenched sample was 

that of the a-Al203 type. After additional heating for several hours a 

new phase was obtained due to loss of sulfur. The strongest lines of 

the diffraction pattern from this phase corresponded to an NaCl-type 

structure, but there were many weak extra lines. All lines were finally 

indexed using the SC2S3 type structure. The strongest lines were 

relatively broad, probably due to inhomogeneity in composition. 

Another set of samples with initial compositions S/Lu=1.45 and 1.50 

was heated inductively for longer periods (about 60 hours) at higher 

temperature (1650®C) to get well homogenized, probably congruently 

vaporizing, samples. The Guinier powder patterns of these samples were 

sharper than those of the samples from lower temperature, also, instead 

of broadness, all the strongest substructure lines were split into 

0.20~0.30(A 20) doublets. In these cases all the lines, including extra 

weak lines, could be indexed with the Sc2S3-type structure by altering 

the orthorhombic cell dimensions. However, when the relative 

intensities of the superstructure lines were fit to the Sc2S3-type 

structure, the relative intensities of the split substructure lines did 

not fit. For example, the first strong lines were split into lines at 

28.459° and 28.667° (20). These lines have their origin in the parent 

cubic 111 reflection, and can be indexed as 220, 206 based on the 

orthorhombic superstructure. The intensities of those two lines should 

be the same in the superstructure. A careful study of the relative 
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Intensities of all such doublets using a mlcrophotometer indicated that 

two phases coexist i.e., an orthorhombic superstructure which is nearly 

isostructural with SC2S3 and a face-centered cubic substructure. 

It should be noted that good resolution is essential to study this 

system, since the two phases are closely related (thus there is 

extensive overlapping in the strongest lines), and only the relative 

ratios of intensities for the two phases can give the information to 

calculate exact compositions and shifts of atomic positions. For 

Improved resolution, and also increased intensity the x-ray diffraction, 

data at room temperature were taken using an Elliot GX-21 rotating anode 

x-ray source and the collected data were analyzed using a Rietveld full-

profile refinement program. The absorption correction appropriate to 

the cylindrical sample shape was made. 

A fit to the combination of a superstructure with Fddd symmetry 

(Sc2S3-type) and a defect NaCl-type with Fm3m symmetry was obtained 

(weighted profile R factor R%=14.65% Bragg R factor; for Sc2S3-type 

phase Rb=3.76% and for NaCl-type Rb=3.79%) 

The final refined structure parameters in the orthorhombic and the 

cubic structures are given in Table 12 and Table 13. The calculated and 

observed diffraction patterns are shown in figure 8. All the strongest 

peaks have shoulders which originate from the orthorhombic 

superstructure phase, and the relative intensity ratios between these 

shoulders and extra weak peaks are important to determine the 

composition of this phase during the refinement procedure. The final 

composition of LU2+XS3 was found to be S/Lu=l.47(3). The remainder of 
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the strongest lines gives the information about the cubic phase, and the 

refined composition of this phase yields S/Lu=1.34(2). 

Table 12. Refined parameters for LU2+XS3 in orthorhombic cell® 

(Overall isotropic thermal parameter; 0.49(5) A^) 

Atom Position Fractional occupancy 

X y z 

Lu (g)b 0.1250, 0.1250, 0.041(4) 0.96(2) 

Lu (g) 0.1250, 0.1250, 0.376(4) 0.96(2) 

Lu (g) 0.1250, 0.1250, 0.5416 0.13(1) 

S (f) 0.1250, 0.3750, 0.1250 1.0 

S (h) 0.1250, 0.3750, 0.4583 1.0 

aunit cell; a=10.7735(8), b=7.7053(5), c=22.873(2) Â. 

^Wyckoff notation. 

Table 13. Refined parameters for LuS^+x in cubic cell^ 

(Overall isotropic thermal parameter: 0.44 (4) Â^) 

Atom Position Fractional occupancy 

Lu (a)b 0.0, 0.0, 0.0 0.75(1) 

S (b) 1/2, 1/2, 1/2 1.0 

aUnit cell; a=5.3797(1) Â. 

^Wyckoff notation. 

A sample with S/Lu=1.45 on a Mo holder was examined by 

high-temperature x-ray diffraction at temperatures up to 1600°C. At 

temperatures above 1500°C, all the peak splitting and weak 
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superstructure peaks disappeared and only the NaCl-type diffraction 

pattern was observed. Thus phase separation occurs upon cooling through 

about 1500°C. 
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Figure 8. Comparison of calculated (top) and observed (bottom) powder 

diffraction for LU2+XS3 and LuSi+x' Vertical strokes 

indicate calculated Bragg-peak positions for LU2+XS3 (upper) 

and LuSi+x(Lower) 
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DISCUSSION 

The phase with S/Lu=1.5 has the «-Al20g type structure found 

previously.GO However, in the composition range between the monosulfide 

and the stoichiometric sesquisulfide an intermediate phase with the 

composition LU2+XS3 and a superstructure similar to that of SC2S3 is 

formed. The structure of LU2+XS3 differs from that of SC2S3 principally 

in small differences in the occupation of sites of the NaCl-type 

substructure. 

The previously reported structure^ of LU3S4 is one of a number of 

interesting examples of ordered phases based upon defect NaCl-type 

solids. The results obtained here show that the single crystal upon 

which the LU3S4 structure determination^ was based was not 

characteristic of the bulk samples which were quenched from the 

congruently vaporizing composition. The calculated powder pattern based 

on the previous single-crystal result does not fit the observed pattern. 

At temperatures above 1500°C, the structure is face-centered cubic 

and during the cooling a vacancy ordering occurs and a mixture of two 

phases is found at temperatures below about 1500°C. This phase 

separation occurs via a first order transition, since the symmetry of 

the superstructure does not satisfy Landau's theory of symmetry and 

phase transitions. It thus appears that the unusual population wave 

structure reported for LU3S4 is appropriate to a sample in transition 

from the high-temperature, random vacancy distribution of 

hyperstoichiometric NaCl-type Lu^.^S. It has been shown that the 

equilibrium phase has a small excess of Lu on sites vacant in the 
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Sc2S3-type structure, and that this phase results from S loss by 

vaporization from LU2S3 with the a-Al203-type structure. 
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SECTION V. SOME OTHER SYSTEMS 
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THE CRYSTAL STRUCTURE OF A NEW PHASE 

IN THE Y-Se SYSTEM: Yg.xSey 

Introduction 

During the investigation of the nonstoichiometric phases between YSe 

and Y2Se3, besides the vacancy ordered phase Y^.^Se, a new phase Yg.xSy, 

was found. The crystal structure was determined by single-crystal and 

powder x-ray diffraction studies. The Y^.xSe? phase reported here is 

basically isostructural with YsS^pG^ but is assigned a different space 

group. The compound Y5S7 is metallic and weakly paramagnetic, 

suggesting delocallzation of electrons in addition to those in valence 

band of trlvalent yttrium and divalent sulfur. 

Experimental Details 

A sample of overall composition Se/Y=1.44 was prepared by the method 

discussed in the synthesis section. The sample lost 0.8% of Its mass 

during the heating. 

A single crystal was selected from the blue-colored product. 

Intensity data were collected with an Enraf-Nonius CAD4 four-circle 

diffractometer and monochromated Mo radiation, employing the 9-20 

scan technique up to 55° (20). From the total of 1077 reflections, 585 

independent reflections with F^ > 3(t (Fp2) were obtained and used for 

structure analysis. The observed intensities were corrected for 

Lorentz-polarlzatlon and absorption (M(MO Kg)=445.3 cm~^) effects. The 
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maximum and minimum numerical absorption correction factors were 1.503 

and 0.897 respectively. 

To analyze the bulk powder sample, the room-temperature powder 

diffraction pattern was taken using a Rigaku 0-0 diffractometer using Cu 

Kgj radiation with a graphite exit monochromator. Least-squares 

structure refinement using the powder data was carried out with a 

Rletveld full-profile refinement program. 

Structure Analysis and Discussion 

The structure was solved from three-dimensional Patterson maps and 

refined by a full-matrix least-squares procedure (CAD4-SDP package). 

The initial refinement within the space group C2/m, with 19 variables 

including all atom positions and isotropic temperature factors, gave 

R=0.068 and Ry=0.096. The space group initially chosen, C2/m, was that 

of the isostructural Y5S7. One of the isotropic thermal parameters for 

selenium obtained from this refinement was considered abnormal. The 

space group Cm, with 36 variables, yielded a refinement which gave 

R=0.041 and R^=0.060. To decide between Cm and C2/m, Hamilton's 

significance test^^ was applied, and the space group C2/m was rejected 

at the 0.5% level of significance. The abnormal isotropic thermal 

parameters of one of the selenium atoms, and the difference Fourier 

maps, both judged to be unreasonable in the C2/m case, provided 

additional evidence for rejecting C2/m. 

After final refinement with numerical absorption correction and 

occupancy refinement, the R value was improved to R=0.036 and to 
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R^=S0.0491. The crystal data are summarized in Table 14 and the 

positional parameters and equivalent isotropic thermal parameters of the 

atoms are listed in Table 15. The structure is shown in Figure 9. X-

ray powder diffraction data for the sample were analyzed by using the 

Rietveld full-profile fitting program to confirm the phase of bulk 

powder sample. The refinement result was in good agreement with single-

crystal refinement results, but a preferred orientation characteristic 

of two-dimensional crystallites on a flat sample holder was found in 2 0 

3 and 0 0 5 directions. The data were corrected for this preferred 

orientation. 

Table 14. Crystal data of Yg.xSe? 

Crystal system monoclinic 

Space group Cm 

Z 2 

a(A) 

b(A) 

c(A) 

1 3 . 2 1 3 ( 2 )  

3 . 9 4 9 0 ( 5 )  

1 2 . 0 3 5 ( 1 )  

1 0 4 . 8 2 ( 1 )  

6 9 7 . 0 7 ( 1 )  

5 . 3 0 0 ( 4 )  

22±1 

P, deg 

V, A3 

d(calc), g cra~3 

Temperature(°C) 



www.manaraa.com

97 

Figure 9. The structure of Yg.xSey 
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Table 15. Atomic coordinates, equivalent Isotropic thermal parameters 

occupancies 

Atoms X y z B(â2) Occupancy 

Y(l) 0.000 0.000 0.500 0.738(3) 0.972(6) 

Y(2) 0.1928(2) -0.500 0.3095(2) 0.990(4) 0.958(8) 

Y(3) -0.1171(2) 0.000 0.0786(2) 0.721(4) 0.860(8) 

Y(4) 0.1119(2) 0.000 -0.0741(3) 0.973(5) 0.892(8) 

Y(5) -0.1988(2) -0.500 -0.3049(2) 1.008(4) 1.000(8) 

Se(l) 0.0376(2) 0.000 0.2857(2) 0.90(4) 1.0 

Se(2) -0.2403(2) -0.500 0.1509(2) 0.84(4) 1.0 

Se(3) -0.0380(2) 0.000 -0.2815(2) 0.86(4) 1.0 

Se(4) 0.2400(2) -0.500 -0.1462(2) 0.67(4) 1.0 

Se(5) -0.1600(2) -0.500 0.4523(2) 0.52(4) 1.0 

Se(6) 0.0106(3) . 0.500 0.0182(2) 0.92(4) 1.0 

Se(7) 0.1598(2) 0.500 -0.4468(2) 0.71(4) 1.0 

Conclusions 

The structure of Y^.^Se? is basically isostructural with 

centrosymmetric Y5S7, with the different space group resulting from 

slight deformations from centrosymmetry. A significant new finding is 

the fractional occupancy of the yttrium positions providing evidence for 

nonstoichlometry in Y^_^Se-̂ . If the mass loss at high temperature 

resulted from volatilization of yttrium, the overall composition of the 

product was Se/Y=1.46, in good agreement with the value obtained by 

refinement of the occupation of the yttrium positions (1.496). This 

nonstoichlometry yields the sesquiselenide stoichiometry that is 
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characteristic of a trivalent metal and a divalent non-metal. 

Accordingly it is possible to view the compound Yg-xSey as a 

sesquiselenide in the defect YgSy-type structure. 

In order to check the reported Y5S7 structure a single-crystal of 

Y5S7 was obtained and investigated. The crystal structure with C2/m 

symmetry was refined satisfactorily in good agreement with the former 

report. There were no partially occupied cationic sites, and the 

structures are consistent with the metallic properties of Y5S7 phase. 



www.manaraa.com

100 

STRUCTURE REFINEMENT FOR Cr2N 

Introduction 

The existence of Cr2N with nitrogen in the octahedral interstices of 

hep chromium forming a43x^3 superstructure with PJlm symmetry was 

reported in 1934.64 The results were based upon powder diffraction 

data. The work described here confirmed and refined the structure. 

Experimental Details 

A Cr2Ni_x sample was prepared by heating chromium powder in a slowly 

flowing equivolume mixture of NH3 and N2 at about 1550° for 4 hours. A 

tungsten boat "containing the powder was held in a tantalum tube, and the 

combination was heated inductively using a coil external to a water 

cooled fused silica enclosure. The temperature was estimated using an 

optical pyrometer. 

A single crystal with an octagonal shape was selected from the 

silvery product. Reflection data were collected with a Rigaku AFC6 

rotating anode four-circle diffractometer and monochromated Mo K# 

radiation, employing the ©-20 scan technique up to 55° (20). From a 

total of 110 reflections 55 independent reflections with F^ > Sa (Fg^) 

were obtained and used for structure analysis. The observed intensities 

were corrected for Lorentz-polarization and absorption effects. 

Initially the structure was refined utilizing a full matrix least-

squares procedure (Texsan-package) with the space group PTlm with all 



www.manaraa.com

101 

atomic positions and isotropic temperature factors. Next only 

superstructure reflections were included while the chromium positions 

and temperature factors were fixed and the nitrogen isotropic 

temperature factor and multiplicity were refined to yield R=6.9%, 

Rw=6.90%. Finally, the superstructure reflections were added and all of 

the parameters were refined. The final overall R values were R=3.70%, 

Rw=4.59%. 

Discussion 

The results of the structure refinement are reported in Table 14 and 

15. The results demonstrate that Cr2N is isostructural with M2N (M=V, 

Nb, Ta)12 and confirm the previously proposed structure.^4 The chromium 

atoms form a hep-type layering (ABAB»**) with nitrogen atoms in 

interstitial positions, two equivalent positions at z=l/2 and one 

position at z=0. 

The refined occupation parameters indicate a slight nitrogen 

deficiency (N/Cr=0.46), however the value is statistically uncertain by 

an amount that does not preclude stoichiometric Cr2N. 
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Table 16. Crystal Data for Cr2N 

Crystal System trigonal 

Space Group PTlm 

Z 3 

a(A) 4.752(3) 

c(A) 4.429(4) 

V(A3.) 86.6(1) 

dcalc (gkm-3) 6.79 

Temperature(°C) 23±1 

Table 17. Atomic Coordinates, Thermal Parameters, Fractional 

Occupancies 

Atom Position B(Â) Fractional Occupancy 

Cr 

N ( l )  

N(2) 

0.333(2), 0.0, 0.2491(3) 

0.3333, 0.6667, 0.5 

0.0 ,  0 .0 ,  0 .0  

0.33(7) 

0 . 2 ( 8 )  

0 . 1 ( 8 )  

1 .00(2)  

0.30(4) 

0 . 1 6 ( 2 )  
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VACANCY ORDERING IN Tl-0 SYSTEM 

According to the phase diagram for the titanium-oxygen system 

reported by Wahlbeck and Gilles,^5 titanium monoxide has a wide range of 

homogeneity with disordered vacancies and the NaCl-type structure at 

high temperature and ordered vacancies at low temperature. The low 

temperature form of TiO was observed by Watanabe et al.13'14 yy means of 

electron diffraction to have a monoclinic ordering of the titanium and 

oxygen vacancies. Further, they have found the more oxygen-rich oxide, 

TiOi^25» to have a tetragonal ordering of the vacancies. A third sample 

of intermediate composition, TiOi,ig, observed to be a mixture of 

the ordered monoclinic and tetragonal structures. 

In this research, a series of samples in the composition range 

T10i.0~^^®1.25 V3S examined by high-temperature and room-temperature 

x-ray diffraction. The samples were obtained by arc melting mixtures of 

Ti and Ti02, and annealing at about 600° for 3 weeks in fused silica 

tubes. At room temperature, the monoclinic structure for TiO with A2/m 

symmetry, the tetragonal structure for TiOi,25 vith I4/m symmetry and 

mixtures of both structures for Ti0i.20 wsce verified by Rietveld full-

profile refinement of diffractometer data. At high-temperatures the 

diffraction patterns were consistent with the NaCl-type structure. 

Although it was not possible to confirm the details of the ordering 

reactions because of extensive overlap of the strong "substructure" 

lines, it is concluded that these results are consistent with the 

reported phase diagram^^ in the TIOQ.9-TI02.3 region, and with 

Watanabe'sl3*14 results. 
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